SPECTACULAR:
Finding Laws from 25 Trillion Terms

Matthias Pall Gissurarson Diego Roque James Koppel
Chalmers Institute of Technology Dark Forest Technologies MIT

Gothenburg, Sweden New York, USA Cambridge, USA

pallm@chalmers.se dieg09627 @ gmail.com jkoppel @mit.edu

ICST, Dublin,
April 18, 2023

o \A/A\SP |t UNIVERSITY OF GOTHENBURG

Spectacular: Background

* Functional Programming (Haskell)
* Pure by default, state is explicit.
 Great for equational reasoning!
 Metamorphic Testing
e Declare what you want to test, not how.
* Targets the oracle problem.
* QuickCheck
 Uses generators to test properties (test oracles!)
* E.g., reverse (reverse xs) == Xs
* QuickSpec
* Generates QuickCheck properties!

Spectacular: Motivation

Test-suites are often lacking

Property-based tests (i.e. metamorphic relations) cover
more, but hard to write and identify

Synthesizing properties helps!
Current approaches (like QuickSpec) don’t scale

But Spectacular does (better)!

reverse ..

[a] —> [a]

(++) :: [a] -> [a] -> [a]

(Givens

reverse (reverse|xs|) ==

reverse (XxXs

++|YS|)) ==

Signature |Arbitrary a =>
xs :: [a], ys ::

XS

reverse [ys

++ reverse

XS

[a], ..

Spectacular

-

/

Spectacular:
Generating Terms

reverse :: [a] -> [a] Type-checker
(++) :: [a] -> [a] -> [a] says...
Xs :: [a], ys :: [a]

TA| |

XS For these 2 functions with 2 added givens:
yS 5460 possible programs of size <=6
reverse Xs Ond|y8228 aLe weII—tIypeld

an are base values!
reverse ys

y > X For 32 functions and 60 added givens:

reverse (++): 25 trillion possible programs!
reverse ++ reverse? X

Splectacular:

Generating Terms

ECTA .
iy . Equality-
L reverse :: [a] -> [a] Constrained
TR (++) :: [a] —> [a] => [a] 'Tree
uickCheck XS .. []J ys .. [] A‘Sltomata
To the rescuel!
XS
ys . :
reverse Xs By combining compact representation

and constraint solving we can efficiently

reverse ys enumerate well-typed programs!

Spectacular: ECTAs
(Koppel et al., ICFP 2022)

reverse :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

xs :: [a], ys :: [a]

o 0.0=1.0

* Uses constraint solving and merging @
to guide choices to avoid backtracking

 Allows enumeration of massive sets! f

The key difference from QuickSpec

* Filtering happens before generation!

Givens

Spectacular: Testing

reverse :: [a] -> [a]
(++) :: [a] -> [a] -> [2]
xs :: [a], ys :: [a]

uickCheck

XS == ys? v N - X

reverse Xs == XS? > - X

reverse Xs == ys? *| QuickCheck |—X

XS ++ XS == XS? > - X

reverse (reverse xs) == xs?—\)= Output
as Law

Givens

LaWS TermGen

o]

Spectacular: Uniques

reverse :: [a] -> [2]
' (++) 2 [a] —> [a] —> [a]

xs :: [a], ys :: [a]

uickCheck

Xs == ys? X >1{xs, ys,

reverse xs == Xs? X reverse Xxs,

reverse Xs == ys? X/ Xs ++ xs} :: Set [a]
XS ++ XS == xs? X

, No need to compare to

reverse (reverse Xs) == XS?]
reverse (reverse xs) again!

Givens

Spectacular: Prunin
Eﬁﬁlﬁiﬁ I) g;

reverse :: [a] -> [a]
(++) 2 [a] —> [a] —> [&]
xs :: [a], ys :: [a]

LaWS TermGen

uickCheck

Xs == ys? X {Xs, ys,
reverse xs == xs? X FEVErse Xs,
reverse xs == ys? X Xs ++ xs} 11 Set [a]
XS ++ XS == Xs? X
reverse (reverse xs) == XS? > xs is any list!
¢
We can prune every program containing We generate by size, so we'll

G
_ .. (reverse (reverse _) anywhere! have seen _ .. xs earlier

Givens
&TA\

LaWS TermGen

o]

Spectacular: (Generalization

reverse :: [a] -> [a]
(++) :: [a] —> [a] -> [a]
xs :: [a], ys :: [a]

uickCheck

reverse (Xs ++ ys) == reverse Xs ++ reverse ys? X
reverse (Xs ++ ysS) == reverse ys ++ reverse Xxs?
Xs == ys? X
reverse Xs == xs? X t |
reverse xs == ys? X Output generalized law
XS ++ Xs == Xs? X
reverse (reverse xXs) == XS?

reverse (XS ++ XS) == reverse Xs ++ reverse Xxs?

.t Spectacular: Phasing

Iterative
Discovery
|
Earlier
Pruning

}

Generalize
Findings
More
Efficiency

QuickCheck

Spectacular° HugelList

con "length" (length :: [A] -> Int),

con "sort" (sort :: [Int] -> [Int]),

con "scanr"
(scanr :: (A ->B ->B) -> B -> [A] -> [B]),

con'™succ™ (suce iz Int <>Int),

((>>=) :: [A] -> (A -> [B]) -> [B]),

con "snd" (snd :: (A, B) -> B),

con "reverse" (reverse :: [A] -> [A]),

con ‘"0" (O :: Int),

cont ™™ () 55 A= B =5 (A, B)),

con II>>=II

con ">=>"

((>=>) :: (A ->[B]) -> (B -> [C]) -> A -> [(]),
con ":" ((:) A -> [A] -> [A]),
con "break"

(break :: (A -> Bool) -> [A] -> ([A], [A])),
con "filter" (filter :: (A -> Bool) -> [A] -> [A]),
con "scanl"

(scanl :: (B ->A ->B) -> B -> [A] -> [B]),
con "zipWith"

(zipWith :: (A -> B -> C) -> [A] -> [B] -> [(C]),

con "concat" (concat :: [[A]] -> [A]),

on "zip" (zip :: [A] -> [B] -> [(A, B)]),
con "usort" (usort :: [Int] -> [Int]),
con "sum" (sum :: [Int] -> Int),
con "++" ((++) :: [A] -> [A] -> [A]),
con "map" (map :: (A -> B) -> [A] -> [B]),

con "foldl"

(foldl :: (B -> A -> B) -> B -> [A] -> B),
con "takeWhile"

(takeWhile :: (A -> Bool) -> [A] -> [A]),
con “foldr"

(foldr :: (A ->B ->B) -> B -> [A] -> B),

con "drop" (drop ::
con "dropWhile"
(dropWhile ::
con "span"
(span :: (A -> Bool) -> [A] -> ([A], [A])),
con "unzip" (unzip :: [(A, B)] -> ([A], [B])),
con "+" ((+) :: Int -> Int -> Int),
n “[1" ([1 :: [A]),
con "partition"
(partition :: (A -> Bool) -> [A] -> ([A], [A])),
con "fst" (fst :: (A, B) -> A),
con "take" (take :: Int -> [A] -> [A])]

Int -> [A] -> [A]),

(A -> Bool) -> [A] -> [A]),

log(Memory)

10 GB;

1 GB:

100 MB:

10 MB/

Spectacular: Results

HugeList Benchmark (32 functions)

Phase 2
Phase 3
Phase 4
QuickSpec
Cutoff

Expression Size

log(Time)

1 Hour?

10 Min]

1 Min|

1 Sec;

Expression Size

Thank
Y ou!

Iterative
Discovery
|
Early
Pruning

}

Generalize
Findings
More
Efficiency

Questions?

pallm@chalmers.se

