
CSI: Haskell - Tracing Lazy Evaluations in a Functional Language
Matthías Páll Gissurarson

Chalmers University of Technology
Gothenburg, Sweden
pallm@chalmers.se

Leonhard Applis
TU Delft

Delft, Netherlands
L.H.Applis@Tudelft.nl

ABSTRACT

In non-strict languages such as Haskell the execution of individual
expressions in a program significantly deviates from the order in
which they appear in the source code. This can make it difficult to
find bugs related to this deviation, since the evaluation of expres-
sions does not occur in the same order as in the source code. At the
moment, Haskell errors focus on values being produced, whereas it
is often the case that faults are due to values being consumed. For
non-strict languages, values involved in a bug are often generated
immediately prior to the evaluation of the buggy code. This creates
an opportunity for evaluation traces, tracking recently evaluated
locations (which can deviate from call-order) to help establish the
origin of values involved in faults. In this paper, we describe an
extension of GHC’s Haskell Program Coverage with evaluation
traces, recording recent evaluations in the coverage file, and re-
porting an evaluation trace alongside the call stack on exception.
This lets us reconstruct the chain of events and locate the origin of
faults. As a case study, we applied our initial implementation to the
nofib-buggy data set and found that some runtime errors greatly
benefit from trace information.

CCS CONCEPTS

• Software and its engineering→ Functional languages; Software
testing and debugging.

KEYWORDS

Laziness, Fault-Localization, Errors, Tracing
ACM Reference Format:

Matthías Páll Gissurarson and Leonhard Applis. 2023. CSI: Haskell - Tracing
Lazy Evaluations in a Functional Language. In The 35th Symposium on
Implementation and Application of Functional Languages (IFL 2023), August
29–31, 2023, Braga, Portugal. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3652561.3652562

1 INTRODUCTION

Problem and Motivation. In crime scene investigation (CSI), es-
tablishing the sequence of events constituting a crime is a key
technique in solving cases. While less dramatic, programs can still
die: despite satisfying the compiler, even Haskell code can crash or
have faulty output. When an error occurs at runtime, a common
approach is investigating the reported call stack to determine where

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IFL 2023, August 29–31, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1631-7/23/08.
https://doi.org/10.1145/3652561.3652562

the error originated. As an example, the code in Figure 1 crashes
with *** Exception: Prelude.head: empty list, and pro-
vides an error message containing the stack trace (seen in Figure 2).
Despite the crash in head, the root cause of the error is based on
divs n which results in an empty list when n is prime (there is an
off-by-one error: n should be n+1 in line 4). This is a motivating case
of an error caused by the wrong data being produced, in contrast
to errors caused by the right data being incorrectly consumed 1

(e.g. evaluating an undefined that should have been replaced). The
stack trace in Figure 2 does not mention divs, and only indicates
that the error stems from head. This lack of information makes
it difficult for developers to reconstruct the events that led to the
error and determine the root cause of the fault.

Without further hints, any function used (and its dependencies)
is a potential suspect. This offset in the tempo of call and evaluation
is not a novel discovery; in fact, a similar example to Figure 1 was
presented by Marlow in 2007 [19].

1 module Main where
2 divs :: Int -> [Int]
3 divs n = go 2
4 where go i | i == n = []
5 go i = if d i
6 then i:(go (i+1))
7 else go (i+1)
8 d i = n `mod` i == 0
9

10 smallestDiv n = head (divs n)
11

12 main :: IO ()
13 main = print (smallestDiv 13)

Figure 1: Our running example, a generator for the divisors

of a number, with an off-by-one error in the base case.

Approach. To address the issue, we implement an extension to
Haskell Program Coverage (HPC) built into GHC: in addition to
tracking expression evaluation with ticks, we also emit instruc-
tions in the intermediate language to track the order of started
evaluations and completed evaluations. HPC is discussed in further
detail in Section 2. We also track the current evaluation depth, the
number of ongoing evaluations. This allows us to reconstruct a
partial evaluation tree an overview of completed, partial, and un-
completed evaluations of expressions, when an exception occurs
(see Section 3.2 for details). We also track a global trace index that
allows us to reconstruct a trace across all modules from the trace
1This can be translated to blame: is it the producer or the consumer that is wrong?
Call stacks help to spot bugs in consumers, while we focus on bugs in producers for
this work.

https://doi.org/10.1145/3652561.3652562
https://doi.org/10.1145/3652561.3652562
https://doi.org/10.1145/3652561.3652562

IFL 2023, August 29–31, 2023, Braga, Portugal Matthías Páll Gissurarson and Leonhard Applis

divs: Prelude.head: empty list
CallStack (from HasCallStack):

error, called at libraries/base/GHC/List.hs:1643:3
in base:GHC.List

errorEmptyList, called at
libraries/base/GHC/List.hs:82:11 in base:GHC.List

badHead, called at libraries/base/GHC/List.hs:78:28
in base:GHC.List

head, called at Div.hs:10:17 in main:Main
CallStack (from -prof):

Main.smallestDiv (Divs.hs:10:17-29)
Main.main (Divs.hs:13:15-28)
Main.main (Divs.hs:13:8-29)
Main.CAF (<entire-module>)

Figure 2: Error message generated by the program in Fig-

ure 1.

of each individual module. These recent evaluations are kept in a
circular buffer alongside the HPC ticks and can both be inspected
directly at runtime or summarized and reported on an exception
alongside the call stack.

In particular, adding an evaluation trace for users is as easy as
passing an additional flag during the compilation phase. It consti-
tutes a noninvasive addition to debugging, does not require any
changes to the developer’s code (such as call stack annotations) and
allows a better understanding of what is going on at runtime even
when external libraries are being used.

This extension for tracking evaluation traces constitutes themain
contribution of this work. Improved runtime errors are one low-
level domain that motivates the extension and is easy to understand
for broad audiences. In the future, these evaluation traces could be
used for more sophisticated use cases, such as program repair or
visualization (see Section 5).

Experimental Evaluation. We apply our prototype to a subset
of the nofib-buggy data set [32]. The data consist of a selection
of nofib programs which GHC uses for internal validation with
artificially introduced bugs (see Section 3.7). These bugs result in
either a runtime exception (e.g. index-out-of-bounds or division by
zero) or incorrect output. In our pre-processing of the data set, we

• remove all non-terminating programs, and
• add assert statements to those data points that return in-
correct output to force a runtime exception.

This accounts for a total of 21 investigated data points. From the
initial findings, we see a trend that certain exceptions benefit from
trace information, depending on the exception type. The data points
using assert usually cover the fault, but the quality of the trace is
dependent on the scope of the test — unit tests are more precise,
while system tests produce crowded traces with many locations
irrelevant to the introduced bug. We analyze the performance over-
head introduced by collecting traces, which seems stable: most
data points require between 100% and 300% more compute time,
depending on the length of the collected trace. Maximum memory
usage increases from 20% to 120%, and the additional binary size
is negligible. There is a general trend that the additional memory
allocation is related to the number of modules, while the additional
compute time seems to depend primarily on the total number of

evaluations the program makes. As the nofib data set is used in
the current test suite and the benchmarking of GHC, we consider
it representative of performance estimates. We thus suggest col-
lecting and reporting the evaluation on a per-exception basis. In
the long-term view, we hope to support debugging for new and
seasoned Haskell programmers alike, but we also see the potential
for classroom use: using the data collected by HPC at runtime the
evaluation tree can be partially reconstructed (up to the length of
the trace) and a clearer view of non-strict evaluation presented
to students. Understanding laziness is a big challenge for students
from other programming paradigms, and visualizing (both buggy
and working) program evaluation traces can be a great aid. Our
experiments are shared in a replication package2.

We utilize nix and shell scripts for easy replication, but we
also provide the output (enhanced error messages) for lightweight
investigation without additional dependencies. The contributions
presented in this work can be summarized as follows:

(1) a prototype implementation of a non-invasive, optional,
coverage-based tracing of evaluations,

(2) example tooling-improvement by reporting of evaluation
traces alongside call stacks,

(3) an initial investigation on the nofib-buggy data set, and
(4) estimates of performance overhead

2 BACKGROUND AND RELATEDWORK

Thunks. In non-strict languages, values are not evaluated until
needed in the computation. In Haskell, this is implemented through
thunks: instead of directly producing a value, expressions produce a
thunk that represents that unevaluated expression. This behavior is
similar to asynchronous concepts in other languages like Promises
(JavaScript) or Task (C#), which are often used for side-effectful
computations (e.g. network requests), while in Haskell they are used
for all computation. When the value of that expression is required,
the thunk is evaluated and resolved to a value. This value might be
fully-evaluated if it is, e.g., an integer. But it might also be just the
head of a list, with the rest of the list being another thunk. Thunks
are in most cases memoized, meaning that the value is evaluated
only once, and the result saved. This is then shared if the value is
needed again at a later time, without requiring re-computation.

Program Coverage and Ticks. Haskell Program Coverage (HPC)
is a tool that is part of GHC and allows developers to track which
expressions were evaluated during the execution of the program:
whenever an expression is evaluated, it bumps a number in an array
(a “tick”) [12, 14]. These numbers are unique identifiers specified in
a per-module mix-file, which are on tick registered in a companion
per-program tix-file. For this work, we reuse the mix-files and
identifiers unchanged, and extend the tix-files with extra arrays
using the identifiers. Note that HPC does not require changes to
the source code, but instead operates with compilation flags that
emit additional instructions to the intermediate language. As we
consider this an elegant interaction, we also strive for a flag-based
change to the intermediate language.

2https://doi.org/10.5281/zenodo.10090375

https://doi.org/10.5281/zenodo.10090375

CSI: Haskell - Tracing Lazy Evaluations in a Functional Language IFL 2023, August 29–31, 2023, Braga, Portugal

The data collected by HPC can be used to generate a report
on how many times each expression was evaluated and used, for
example, to check the test coverage or identify unused code.

Stack Traces & Error Messages. While research on the use of stack
traces is a popular topic, e.g. when applied for program slicing or
crash reproduction, their dedicated value for manual debugging
is not thoroughly investigated. Bettenberg et al. [7] investigate
differences originating from different perspectives of bug reports.
One of their findings is that developers need information that users
rarely provide, of which stack traces are particularly useful.

We also recommend the work of Becker et al. [6] as a general
overview of research on error messages. Their extensive meta-
study covers many findings and trends from the fields of technical
implementation, pedagogic use, and improvement of errormessages.
Among their primary findings relevant to this work are: students
and programmers alike actually read error messages and stack
traces [5], students are discouraged when error messages do not
point toward the faults [28, 33, 38] and that cognitive load should be
considered in the design and presentation of errors [24, 25, 31] (i.e.,
do not overwhelm the user with information). Lastly, motivating
this work, they identify localization as one of the defining technical
attributes of error messages that constitute their quality, and we
aim to enable better localization.

We argue that our work contributes towards the usefulness of
traces and forms a starting point for similar research on Haskell.
In the absence of detailed analysis in Haskell, our objective is to
provide a similar investigation to that of Schroeter et al. [29] in
the coverage of bug locations through stack traces. In their work,
Schroeter et al. run buggy programs with known faults and inves-
tigate the produced stack traces to determine whether and where
they contain the fault. We reproduce this for the nofib-buggy stack
traces and apply the same approach for the evaluation traces.

Stack Traces for Haskell. We often take stack traces for granted,
but they have only been available in a limited form until recently
for Haskell. As late as 2009, Allwood et al. [2] and Marlow [19]
tackled the first issues that appeared due to a mismatch between
the source code and the optimized executed code. Their central
contribution is to address the differences between the behavior of
the stack (and stack traces) and the original program syntax, by
introducing a transformation of GHC core programs into ones that
simulate passing a stack around to preserve the stack trace of the
executed program [2]. This was further improved by introducing the
HasCallStack constraint that does not need to be simulated by the
runtime system, but while this constraint can sometimes be inferred,
our experiments with the nofib-buggy data set show that this is
not often the case. Similarly, the simulated call stack adding -prof
in conjunction with the -fprof-auto and -fprof-auto-calls
flags is either

• not printed for the exceptions in nofib-buggy, with the
output being Main: divide by zero or similar,

• or in the form of
CallStack (from HasCallStack):

assert, called at Main.lhs:78:5 in main:Main
CallStack (from -prof):

Main.main (Main.lhs:(75,3)-(78,59))
Main.CAF (<entire-module>)

indicating the assert and the main-function, without giving
further clue to the location of the bug.

In the output of our running example div from Figure 2, adding the
-prof -fprof-auto -fprof-auto-calls improves the situation
slightly, indicating the smallestDiv function, but this improve-
ment does not extend to the nofib-buggy data points. UsingGHC’s
profiling also requires annotating the Prelude.head function with
a HasCallStack constraint, but it is still not enough to locate the
fault. Manual annotations with HasCallStack are non-optimal for
programmers and in our running example extend the information
on the crash, but not on the source of it.

Based on the existing research, the current state of Haskell stack
traces faces two main challenges: higher-order functions and lazy
evaluation. Especially when combined, these tend to disturb stack
traces or produce errors that are not aligned with the reported
traces. We hope that our work improves the quality of errors for
lazy evaluation and enables later researchers to improve errors for
higher-order functions.

Tracing Evaluations for Haskell. There have been some approaches
to tracingHaskell evaluations, which differ from the coverage-based
technique presented in this work. Chitil et al. [36] compared three
systems available in 2000: HAT [9], HOOD [13], and Freja [21].
Another system mentioned is Buddha [20].

Some approaches are conceptually different, namely Buddha
and Hood require changes on a source code level. This limits their
application, e.g. is it hard to extend tracing to external libraries.

A part of Freja consists of a custom Haskell compiler that covers
a subset of the Haskell98 standard (e.g. excluding IO). The code that
is compiled is altered in an intermediate language, and the redexes
are recorded. Frejas concept is the closest to the one presented
in this work. Our approach differs by 1 extending existing GHC
modules instead of requiring an extra compiler 2 covering a trace
of the last evaluations instead of all evaluations and 3 tracking
whether an evaluation was started and or finished separately.

In a similar manner, HAT is tied to nhc98 and transforms the
source code outside of the compilation process, which can cause
performance issues and is harder to integrate with external tools.

With their dual systems of data creation and browsers, the exist-
ing tools went a step further than the contribution of CSI: Haskell.
Concepts of how to use the evaluation data produced are presented
in Section 5. We also hope that the separation of tracing and debug-
ging helps to create additive tools in a modern Haskell landscape.

Static Methods. CSI: Haskell is a dynamic approach, based on
running the code, in contrast to static methods, which analyze
faults without running the code. In Haskell, there is already a rich
type system that allows expressing a wide variety of behavior that
is checked at compile time. However, these do not capture many
attributes commonly expressed with properties. One approach to
lift “property-style” testing and debugging to static checking is
to use refinement types [35]. These types of checks are integrated
through a GHC plugin [27], allowing properties such as x > 0
==> f x > 0 to be statically checked by an SMT solver. One
extension to this is lazy counterfactual symbolic execution [15]:
When paired with refinement types such as those in Liquid Haskell,
lazy counterfactual execution allows the localization of refinement

IFL 2023, August 29–31, 2023, Braga, Portugal Matthías Páll Gissurarson and Leonhard Applis

type errors, revealing faults in the code to be found without need
for tracing. This constitutes a heavier approach and raises the entry
barrier for ecosystems (including libraries) that do not yet have a
refinement type specification.

Algorithmic debugging. Algorithmic debugging methods are dy-
namic approaches based on recording information during program
execution and then asking the developer whether the intermedi-
ate statements agree with their intention [10]. In most languages,
this debugging suffers from side effects, which are no concern in
pure functional languages, making Haskell a prime candidate for
algorithmic debugging. One tool for Haskell is HOED [10], which
extends the debugger HOOD [13] with GHC’s profiling informa-
tion. Like HOOD, it requires users to annotate the functions that
they wish to “observe” and create profiling cost centers. Based on
this combination, it is possible to construct a computation tree
from the collected traces for the observed expressions [10]. This
rich approach provides a lot of information but differs from CSI:
Haskell in a few points. First, CSI: Haskell utilizes HPC and thus
coverage and does not rely on tracing and cost centers. Second,
our approach is capable of capturing evaluation trees, in a similar
manner to computation trees, providing information on the actual
execution of an evaluation (that is, the state of each value within
the captured tree), but do not capture the values themselves. Lastly,
CSI: Haskell gathers data on the entire project and does not re-
quire manual annotations on suspicious elements of the codebase.
Thus, we start with an earlier stage of debugging, where suspicious
elements still need to be identified.

We consider CSI: Haskell not as a debugger, but instead a source
of trace information for follow-up tools. The example presentation
as evaluation traces could greatly benefit from concepts of algorith-
mic debugging, but lies beyond the scope of this work.

3 APPROACH

3.1 Evaluation Trees

The approach taken by CSI: Haskell is aimed at the collection
of just enough data at runtime to reconstruct the global evalua-
tion tree of a program. Lazy functional program evaluation can be
viewed in terms of an evaluation tree: the evaluation of each expres-
sion requires the evaluation of its subexpressions whenever those
expressions are needed to produce output [18]. For Haskell, this
evaluation has been linearized using implementations of machines
such as Sestoft’s lazy abstract machine [30], placing evaluation trees
on sound theoretical foundations and (by now) a robust amount of
experience. Re-using the theoretical structures lends itself for the
application of debugging too: For debugging, a tree-like view of the
expressions and the order of evaluations for each component is an
important part of understanding the programs and how they be-
have. This is especially relevant when the programs fail and throw
an exception at runtime, e.g. the evaluation tree in Figure 3. This
tree shows how evaluation proceeds by resolving the functions to
be used in the relevant context (using big-step semantics, denoted
by “⇓” for readability), which are then applied to the fully resolved
value of their arguments, resulting in their final value.

3.2 Trace Data

To collect the data used in constructing the trace, we extend HPC,
the Haskell Program Coverage built into GHC by Gill et al. [14].
HPC divides the source code into expression boxes, which are ex-
tracted during compilation and stored in an associated mix file.
The code is then instrumented with additional instructions in the
intermediate language (C- -) to add a bump to the appropriate array
value when the evaluation of an expression starts (i.e. its output
is demanded). At runtime, HPC maintains a module-per-module
in-memory array, with one entry per expression in the original
program. Whenever an expression starts to be evaluated, the cor-
responding array entry is incremented with the bump instruction,
allowing HPC to track the coverage of programs [14]. CSI: Haskell
adds three additional in-memory arrays to the runtime system,
along with additional bookkeeping, the trace array, evaluation depth
array, and global index array. An example of these for the program
in Figure 1 is provided in Section 3.3.

The Trace Array. The first additional array holds the trace itself,
a log of values corresponding to the expression boxes defined by
HPC. This array contains an entry whenever an expression starts
being evaluated, and another entry whenever an expression fin-
ishes being evaluated to the outermost constructor. Each entry
represents an explicit expression in the source code, which is the
same as that used for the original HPC coverage: for any single
expression 𝑒 , the original coverage tracks the number of times that
expression is evaluated. For example, if we look at an expression
𝑒𝑖 with 𝑖 = 5, at the beginning of the evaluation of 𝑒 , the index
number 5 would be incremented in the corresponding array in the
tix-file. With our additions, the index 5 is written in a trace array
both when the expression starts to be evaluated and when it has
finished evaluating. Note that since Haskell is non-strict, the eval-
uation of an expression might not return a fully evaluated value,
but rather a weak normal form represented by a constructor whose
components might further, not yet fully-evaluated thunks. To log
these evaluations, an additional register is introduced, in which the
(possibly partial) value of an expression is saved. The completion is
then recorded and the register is returned. This allows us to log the
completion of evaluations even when they would have immediately
returned, at the cost of additional overhead at runtime.

The Evaluation Depth Array. The second array keeps a log of the
current evaluation depth before the start of the evaluation of an
expression and the depth before the completion of the evaluation of
an expression. Using the two in conjunction, the evaluation depth
and trace arrays allow us to reconstruct a partial view of the full
evaluation tree of the program and determine whether an entry
in the trace array corresponds to the start of evaluation or the
completion of evaluation of the indicated expression. It also lets us
determinewhich evaluations have started and not finished, allowing
us to determine the current call stack in terms of expressions. This
allows us to see which evaluations were started and finished in the
same subtree of the evaluation tree, allowing us to highlight the
branches of the evaluation that are “close” in the tree.

The Global Index Array. The third array tracks a global counter,
associating each index in the other two arrays with a unique inte-
ger timestamp. This allows us to reconstruct a global trace across

CSI: Haskell - Tracing Lazy Evaluations in a Functional Language IFL 2023, August 29–31, 2023, Braga, Portugal

Γ0 ⊢ head2 ⇓ 𝜆xs. head’ xs, Γ1

Γ1 ⊢ divs4 ⇓ 𝜆n. divs’ n, Γ2 Γ2 ⊢ n5 ⇓ n’, Γ3 where ⟦𝑛 = 𝑛′⟧
(. . .)6 (. . .)7

Γ3 ⊢ divs’ n ⇓ xs’, Γ𝑛−1

Γ1 ⊢ (divs n)3 ⇓ xs’, Γ𝑛 where ⟦𝑥𝑠 = 𝑥𝑠 ′⟧
Γ1 ⊢ head’ xs ⇓ v, Γ𝑛

Γ0 ⊢ (head (divs n))1 ⇓ v, Γ𝑛

Figure 3: Evaluation tree for head (divs n) in Figure 1. Superscripts refer to indices of expressions in the Section 3.3 example.

modules, by gathering the trace for each module and sorting by the
global counter.

Trace Length & Circular Buffers. Keeping track of an arbitrarily long
run of a program would require a trace entry for each expression
evaluated. For long-running programs, this would require an ex-
cessive amount of memory. As noted in the introduction, errors
usually involve recently evaluated data. By keeping the length of
the arrays constant and introducing a modulus operation to the
running index, we effectively treat them as circular buffers. This al-
lows us to keep track of only the most recently evaluated locations
at the time of an error, giving us a “window” into what the pro-
gram was executing right before the error occurred. Configurable
with a compiler flag, this allows users to select how much memory
overhead they are willing to trade off for a longer trace. Alongside
the computational impact, there is also an information trade-off;
some errors are captured only in longer traces, but unnecessarily
long traces form a barrier to understanding. We investigate both
trade-offs in Section 4.

3.3 Example

As an example, consider the evaluation of the expression head
(divs n) and its evaluation tree shown in Figure 3. Here, 𝐸1 corre-
sponds to the expression superscripted with 1, that is, head (divs
n), 𝐸2 to head, 𝐸3 to (divs n), and so on. Note that each expression
has an annotation, as well as each of its subexpressions. In the inter-
est of brevity, 𝐸6 and 𝐸7 are not shown, nor are any of their subex-
pressions. Using the annotations provided in the figure, a success-
ful evaluation trace would be [𝐸1, 𝐸2, 𝐸2, 𝐸3, 𝐸4, 𝐸4, 𝐸5, 𝐸5, ..., 𝐸3, 𝐸1],
with the associated evaluation depths [0, 1, 2, 1, 2, 3, 2, 3, 2, ..., 2, 1].
The global trace array would simply be [1, . . .], since there is only
one module involved. The evaluation proceeds as follows: At the
start of evaluation, the evaluation depth is 0. We start by evaluating
head (divs n), indicated by 𝐸1. The evaluation depth is now 1.
𝐸1 demands evaluation of head, i.e. 𝐸2. Since we started evaluating
𝐸2 and have not finished 𝐸1, the depth of the evaluation is now
2. The function head is from a library, which returns directly, in-
dicated by 𝐸2, and the evaluation depth decreases to 1. Now the
implementation of head, head’ demands its first argument, which
causes evaluation of (divs n), i.e. 𝐸3, resulting in an evaluation
depth of 2. This continues until 𝐸3 completes, which in turn lets 𝐸1
complete, and the program is fully evaluated. However, if 𝐸3 results
in an empty list, the evaluation Γ ⊢ head’ xs’ ⇓ 𝑣 will throw
an exception, aborting execution before logging that 𝐸1 finished.
The trace will show that 𝐸3 was the last expression to complete
evaluation before the error.

divs: Prelude.head: empty list
CallStack (from HasCallStack):

error, called at
libraries/base/GHC/List.hs:1749:3 in base:GHC.List

errorEmptyList, called at
libraries/base/GHC/List.hs:89:11 in base:GHC.List

badHead, called at
libraries/base/GHC/List.hs:83:28 in base:GHC.List

head, called at Divs.hs:10:17 in main:Main
CallStack (from -prof):

Main.smallestDiv (Divs.hs:10:17-29)
Main.main (Divs.hs:13:15-28)
Main.main (Divs.hs:13:8-29)
Main.CAF (<entire-module>)

Recently evaluated locations:
Divs.hs:4:25-4:26 ... = []
Divs.hs:4:16-4:21 |...,i == n,...=... (was matched)
repeats (11 times in window):

Divs.hs:4:9-7:28 Main:divs>go
Divs.hs:7:21-7:28 ... = go (i+1)
Divs.hs:5:19-5:21 ...else d i
Divs.hs:8:9-8:28 Main:divs>d
Divs.hs:5:16-7:28 ... = if d i...
Divs.hs:4:16-4:21 |...,i == n,...=... (not matched)

Divs.hs:4:9-7:28 Main:divs>go
Divs.hs:3:1-8:28 Main:divs
Previous expressions:
Divs.hs:10:1-10:29 Main:smallestDiv
Divs.hs:13:1-13:29 Main:main

Figure 4: The improved error message includes a list of re-

cently evaluated locations. The preceding number is the in-

dex of the expression in the mixfile and is used to distinguish
different expressions at a glance.

3.4 Persistence and Tix Upgrades

As CSI: Haskell is integrated with HPC, we also extend the tix
file format that HPC generates to persist information between runs
to include the trace and evaluation depth information.

Apart from changes to the tix-format, the tracking is noninva-
sive and requires no modification of the programs on behalf of the
user. Setting the size of the trace buffers to a sufficient length can
be used to generate traces across multiple runs of a program. These
extended tix files, along with the associated mix files that store
the expression boxes, can be parsed by external tools for further
analysis and presentation. One such presentation is a SARIF file
derived from the a trace, allowing further integration of Haskell
traces into IDEs [3]. This has been explored with a short prototype
by the authors and is feasible; however, with respect to the scope,

IFL 2023, August 29–31, 2023, Braga, Portugal Matthías Páll Gissurarson and Leonhard Applis

we consider it future work (see Section 5). A non-textual presenta-
tion of the trace could be to visualize the behavior of the program
as a graph, as shown in Figure 5.

3.5 Output

The additional information can be accessed via runtime reflection
using the GHC-API, and consumed by external tools such as auto-
matic program repair tools, testing frameworks, and IDEs. As one
immediately accessible application, we adjust the current runtime
error printing in GHC and add a message detailing the recently
evaluated locations. Using the trace array in conjunction with the
evaluation depth array, we generate a list of recently evaluated lo-
cations. By comparing the current evaluation depth on an error and
the evaluation depth array, we determine the involved expressions
whose evaluation was demanded by the expression on top of the
call stack at the time of crash. We label the rest as “previous expres-
sions”, whose evaluation was complete before the evaluation of the
expression on top of the call stack started and therefore were not
triggered by the expression on top of the call stack. As an example,
Figure 4 shows the new output generated for divs from Figure 1,
which shares the evaluation tree with the example above.

3.6 Summarization and Presentation

Since we track all evaluated expressions, the traces can become
quite long. To effectively display error messages, filtering and sum-
marizing traces is important. The summarization of traces is a rich
field [16, 22], but often involves the full instrumentation of the
program from the beginning to the end, while CSI: Haskell has a
limited window of recently evaluated locations. To be useful as the
default when printing error messages, the summarization of the
traces must be done quickly and efficiently, avoiding unnecessary
delay when reporting errors. The current approach in CSI: Haskell
is to remove all unconditionally evaluated expressions done be-
fore the last branch. This makes the traces much shorter while
keeping the relevant information about the evaluated expressions
immediately preceding the error. Another summarization that CSI:
Haskell implements is to merge repeated patterns that occur in
loops and indicate them as repetition in the output, with the caveat
that it only captures repetition in the “window” that the trace offers
and maymiss out on some longer patterns. This technique struggles
when there is variation in the loop, such as when it is conditionally
different for each iteration, e.g. cases for odd and even numbers. We
aim to mitigate such variations using graph-based trace modeling
and using more of the information available on the structure of the
code during summarization (see Section 5). As described earlier,
we used the evaluation depth at the time of a crash in conjunction
with the tracking of the evaluation depth to segregate expressions
that were evaluated at the current evaluation depth or lower and
those that occurred earlier. Looking at the evaluation depth array
also allows us to construct a partial notion of the call stack at the
time of the crash, though some information might have been lost
due to truncation in long-running programs. In this way, we can
track the call stack for any program without manual annotations of
HasCallStack => throughout the code. Since CSI: Haskell is inte-
grated into the compiler and runtime system itself, it can be easily
applied to external Haskell libraries and dependencies simply by

adding an additional flag during compilation. This helps developers
trace issues that originate in external libraries and understand the
interaction of their code with the library.

As for presentation, the current implementation reads the rele-
vant locations from the source file, and displays them in a manner
appropriate to their form, whether it is a branching if statement,
guard or qualifier in a list comprehension or a non-branching ex-
pression. To further shrink the output, we only show non-branching
expressions up to the last branching expression in the trace. This
allows the focus to be on the control flow up to the point where the
evaluation of a non-branching expression might have caused the
error. When the total number of evaluations exceeds the window,
a short statement is appended to the error message showing the
total number of evaluations and suggesting to increase the trace
length before rerunning. We stress that the current presentation is
a prototype and outline the need for further research in Section 5.

3.7 Data

Apart from the motivating example in Figure 1, we draw data from
the nofib-buggy data set [32]. In this data set, Silva introduced
artificial bugs of various categories to the data points of the nofib
benchmark [23] used in the GHC test suite.

We utilize a subset of 21 bugs summarized in Table 1. Our
biggest exclusion criteria of the original nofib-buggy was the cat-
egory of non-termination; since our evaluation is based on crashes,
non-termination does not provide the output we need. Similarly,
StackOverflowExceptions are errors of the environment, not nec-
essarily in the program. These exceptions come from the runtime
system itself and not from the program, so such exceptions were
excluded as well.

Lastly, for ease of comparison, wemodified programs that merely
produced incorrect results to fail with an exception using an assert.
These assertions are constructed using the console output (stdout)
of the correct programs. Due to the lack of annotations, the call
stacks in these examined cases are all trivial and only show the
call for equality in the assert, but the evaluation traces often span
relevant locations in the code. We admit that the assertions based
on string comparison are neither sophisticated nor best practice.
In the spirit of a vertical prototype, we aimed to see “can evalu-
ation traces help with testing?” Despite looking a bit ad-hoc, the
insights might be as valuable as the inspection of runtime errors: a
healthy project should address problems in the test suite and not at
runtime. Additions to the testing toolkit may pay off earlier than
post-mortem debugging tools.

4 INITIAL RESULTS

To analyze the results, we recompiled the nofib-buggy data set
with a fork of GHC and HPC that implements CSI: Haskell as
described in Section 3. After obtaining crash logs, two authors
looked at each log separately, deriving data and judging the merits
of the new output. All code, data points, logs, and evaluations are
provided in the companion package archived at https://doi.org/10.
5281/zenodo.10090375. The remainder of this section covers the
summary and highlights of the findings.

Summary & Overview. Table 2 presents the results achieved by
the nofib-buggy data as shown in Section 3.7: of the 21 data points,

https://doi.org/10.5281/zenodo.10090375
https://doi.org/10.5281/zenodo.10090375

CSI: Haskell - Tracing Lazy Evaluations in a Functional Language IFL 2023, August 29–31, 2023, Braga, Portugal

Figure 5: A graphical representation of the trace in Figure 4 generated by CSI: Haskell and an external script.

13 have the location of the error appear within a trace length of 50
and 19 in traces of length 1000 visualized in Figure 6 and Figure 7.

Visible in Figure 73 is that in data points with exceptions appear
much earlier than their assert counterparts, and most issues are
covered at the top of the exceptions. For most of the data points, the
displayed position in the log was quite prominent (usually within
the first 10 lines).

The required trace length did not directly depend on the size
of the program, but rather on the amount of thunks that the pro-
gram builds up during evaluation. We can see this behavior in
Figure 9. Naturally, the real data points produce a lot of thunks

3Note the log-scale on the x-axis

Table 1: Overview of the nofib-buggy programs used

nofib-buggy Imaginary Spectral Real
Error Type
Exception paraffins

digits-of-e2
sorting
primetest

anna

Assert digits-of-e1
rfib
tak
integrate
gen_regexps
bernoulli
wheel-sieve1
wheel-sieve2
x2n1

chichelli
fish
minimax

gg
parser
reptile
lift

and evaluations due to their complexity, but some of the spectral
and imaginary data points (artificially) produce large amounts of
thunks (spectral/minimax) or evaluations (imaginary/rfib). For
a helpful exception, it is necessary that both the start of evaluation
and end of evaluation of the involved expressions be in the window
of recent evaluations. However, the window should be as small as
possible - as seen in Table 2; for both reptile and minimax the
position of the faulty statement appears later for a trace length of
1000 compared to the trace length of 50.

Figure 6: Minimum trace length to cover the error

Performance. We provide a summary of the compute time used
in Figure 8 and of the allocated (peak) memory in Figure 10. All
reported values are derived from a set of five measured runs on a

IFL 2023, August 29–31, 2023, Braga, Portugal Matthías Páll Gissurarson and Leonhard Applis

Table 2: Summary of nofib-buggy results. LOC indicates the

location in the output after the initial exception, and min-

imum trace length the shortest length in which the error

location appears out of [25, 50, 100, 500, 1000].

data point Uses assert minimum
trace
length

LOC
50

LOC
1000

LOC
1000
Strict

imaginary

bernoulli Y 50 6 6 6
digits-of-e1 Y 500 - 11 21
digits-of-e2 N 25 1 1 -
gen_regexps Y - - - -
integrate Y - - - -
paraffins N 500 - 24 24
rfib Y 500 - 4 7
tak Y 25 4 4 2
wheel-sieve1 Y 25 2 2 -
wheel-sieve2 Y 50 7 8 -
x2n1 Y 25 2 2 2

spectral

cichelli Y 1000 - 36 -
fish Y 25 3 3 1
minimax Y 50 28 260 -
primetest N 25 2 2 2
sorting N 25 1 1 1

real

anna N 25 1 1 -
gg Y 25 1 1 -
lift Y 500 - 32 -
parser Y 500 - 13 19
reptile Y 25 29 35 94

Figure 7: Histogram of position in the trace by data set and

error type. Note that the x-axis is logarithmic.

dedicated machine, dropping the highest and lowest values (out-
liers) and averaging the remaining three. Measurements were con-
ducted with the Linux /usr/bin/time executable and the bash
time command on a cloud-based machine with 32GB of RAM and

6 Intel Xeon E312xx @2GHz 64bit vCPUs. We also performed a
set of runs with profiling turned on, using the GHC flags -fprof,
-fprof-auto, and -fprof-auto-calls, which yielded comparable
increments. As profiling introduces more side effects, we prefer to
report the non-profiling numbers in this work. Profile performance
measures are included in the companion package.

Figure 8 is a kernel density estimate plot [8] summarizing the dis-
tribution of the calculated time deltas for all data points. It presents
a smooth growth of wall-clock time to increase the trace length,
with the majority of data points needing between ∼100% and ∼300%
longer. We can also observe that outliers move respectively, keep-
ing their relative position throughout increasing trace lengths. In
particular, the hungriest data point was rfib from the imaginary
data set that needed 760% longer to finish. We take a closer look at
rfib in the paragraph limitations.

The box plot in Figure 10 shows the memory usage and we
observe a trend towards slightly higher resource need. The data
points in the imaginary set allocate ∼15% memory at peak use
and the data points in the spectral set ∼60% in the median. For
the data points in the real set the biggest difference was found,
with one data point exceeding twice the memory usage. Due to the
small amount of data points, and each data point in the real set
being unique, we don’t want to infer general assumptions about
the memory usage of these programs.

Our recommendation is to investigate these individually when
necessary. We also observe that memory use grows in general with
the use of traces, but the size of the trace does not have a huge
impact on the preliminary results; the overhead originates from
data collection, and not from storing and bookkeeping.

We measured the size of the binary compiled for each program.
The difference in most programs was negligible (≤ 1𝑀), but we
must note that the size increase can be notable for longer trace
lengths4. For a run gathering full-traces (i.e., trace length set to
100k), each binary grew between two and ten Mb.

As traces are used to locate errors, the overhead presented in this
work is expected to occur during development and maintenance
and will not affect production environments.

Highlights. Among the best results are two data points for the
spectral data set, sorting and primetest. The errors are division-
by-zero and a non-exhaustive pattern match, respectively. These
errors have little information by default, with no location or stack
trace. The extended output (see sorting in Figure 11) with the trace
information that CSI: Haskell adds shows the starting positions
where incorrect data was produced and does so quite precisely.

The second group of promising results is demonstrated by the
data points for minimax and gg: the bug introduced to minimax
consists of not applying a minimax algorithm to Tic-Tac-Toe, but
instead performing a minimin. Figure 12 catches this behavior by
repeating the Game:min' function, while we would expect alternat-
ing min and max functions. This is not exactly unique to evaluation
traces, but we get “a bit of coverage for free”. Without

4This is due to an in-binary representation of the tick-arrays, to address internal
mechanics such as garbage collection. For normal coverage, the addition is bounded
by the modules and their expressions, while our additions can vary in length and thus
grow the binary to varying degrees.

CSI: Haskell - Tracing Lazy Evaluations in a Functional Language IFL 2023, August 29–31, 2023, Braga, Portugal

Figure 8: Kernel density estimate plot of increased compute time with varying trace lengths

Figure 9: Distribution of maximum evaluation depth and to-

tal number of evaluations

Figure 10: Additional memory usage per data set for a trace

length of 1000

enhanced traces, this would also be spotted when running a HPC
coverage report and seeing the uncalled max function.

Main: divide by zero
Recently evaluated locations:

./Sort.hs:146:25-146:25 2

./Sort.hs:146:23-146:23 2

./Sort.hs:146:22-146:26 (2-2)

./Sort.hs:146:14-146:26 k `div` (2-2)
Previous expressions:
./Sort.hs:146:5-146:26 Sort:heapSort>div2
./Sort.hs:128:52-128:67 ... =
repeats (4 times in window):

./Sort.hs:128:5-132:84 Sort:heapSort>to_heap
Main.hs:14:36-14:43 ... =
Main.hs:13:5-22:57 Main:mangle>sort
Main.hs:10:1-22:57 Main:mangle
Main.hs:5:1-7:33 Main:main

There were 668 evaluations in total but only 86 were recorded.
Re-run again with a bigger trace length for better coverage.

Figure 11: The improved error log for Sorting - the first loca-
tions of the trace are the precise consumers and producers

of the division-by-zero error
5
.

Similarly gg from the real data set uses a wrong variable, leaving
large parts of a where block unevaluated.

This second group of bugs can be quickly noticed using pro-
gram coverage, and it is possible to get the same information from
a coverage report. Unfortunately, we must admit that this is an
enlightened guess – we knew what was going wrong, and thus we
found patterns and clues in the traces. These bugs can be found
quite easily when program coverage is visualized, and thus we
hope that a visualization of traces would also yield such benefits,
motivating more complex tooling.

Before we leave the highlights, we want to emphasize the pos-
sibilities of generated traces for mechanical evaluations. Some of
the traces presented throughout this paper are a bit crowded or
hard to understand, but nevertheless, they contain the information
necessary for better fault-localization and other warnings. We see
potential tooling that spots mismatches in coverage and evalua-
tion, or that warns about potential performance issues with a lot of
thunks, like we see in the rfib example.
5Note that some of the right hand sides are missing here, due to a mismatch between
the locations reported byHPC and the actual location in the file... caused by the mixing
of tabs and spaces! Fixing this is beyond the scope of the prototype.

IFL 2023, August 29–31, 2023, Braga, Portugal Matthías Páll Gissurarson and Leonhard Applis

Main: Assertion failed
CallStack (from HasCallStack):
assert, called at Main.hs:12:5 in main:Main
CallStack (from -prof):
Main.main (Main.hs:(10,1)-(12,57))
Recently evaluated locations:
./Game.hs:32:59-32:59
./Game.hs:31:30-31:30
./Game.hs:36:23-36:23 e
./Board.hs:57:53-57:56 Board:showsPrec
./Board.hs:57:53-57:56 Board:show
./Game.hs:31:27-31:31 ... =
./Game.hs:31:9-33:71 Game:best>best'
./Game.hs:32:51-32:65 ... = s bs ss
./Game.hs:32:37-32:47 |..., s') = best,...=...

(was matched)
./Game.hs:63:15-63:18 ... = OWin
./Game.hs:63:1-68:47 Game:min'
./Board.hs:57:70-57:71 Board:(==)
./Board.hs:26:33-26:55 ... = [[r1,r2,insert p r3 x]]
./Board.hs:23:26-23:46 |...,not (empty pos board),...=...

(not matched)
./Board.hs:41:24-41:27 ... = True
./Board.hs:39:1-42:18 Board:empty'
./Board.hs:36:26-36:36 ... = empty' x r3
./Board.hs:34:1-36:36 Board:empty
./Board.hs:23:1-26:55 Board:placePiece
./Game.hs:31:9-33:71 Game:best>best'
./Game.hs:32:51-32:65 ... = s bs ss
./Game.hs:32:37-32:47 |..., s') = best,...=...

(was matched)
./Game.hs:63:15-63:18 ... = OWin
./Game.hs:63:1-68:47 Game:min'
...

Figure 12: The improved error log for minimax - notice the

repetition of min’, without the appearance of a max’.

Full Evaluation Record versus Suffix. A thread running through
this paper is the initial scenario: is it enough to determine what
happened immediately before a crash in order to locate the fault?
We consider the recent evaluations the suffix of all evaluations.
Shown in Table 2, the errors appear in 90% of the data points exam-
ined. Furthermore, a relatively short trace of only 50 locations per
module is sufficient in 62% of the cases. When running the program
in Figure 13, there are 95845589 evaluations in total, of which only
500 were in the final recorded trace, which is enough to cover the
faulty location. Despite losing analytical benefits of the complete
trace, we are able to locate the fault while keeping only 0.0005217%
of the trace. We thus recommend capturing the only the last evalu-
ations, with a little fine-tuning in trace lengths depending on the
number of evaluations (unless necessary for follow-up analysis).

Strict vs. Lazy Behavior. For comparison, we conducted exper-
iments with the -XStrict language extension, in addition to the
-fno-strictness and -fno-full-laziness flags to observe changes
in evaluation behavior. Without the extension, the trace for each
data point was identical, with or without the flags. Our initial (naive)
assumption was that for strict programs consumption and produc-
tion of errors would align, resulting in always perfect locations.

The heavy-handed use of the -XStrict extension meant that some
of the programs would no longer terminate, as many of them rely
on laziness to be computable. This resulted in 8 data points that do
not finish when strict evaluation is forced.

Among the terminating data points, we see mixed results - fish
and tak perform slightly better, while some evaluations appear
later than in their non-strict configuration. We attribute this to the
general offset in consumption and production that is also observed
in strict & imperative programming languages (e.g., in the work
of Zhang et al. [39]): The distance between fault-introduction and
fault-consumption also exists in Haskell, but non-strict evaluation
can shrink the gap between fault-introduction evaluation and fault-
consumption evaluation.

To paraphrase, there is always a gap between fault and error, but
non-strict evaluation can bridge this gap by postponing evaluations.

Thus, laziness modulates the distance between bug occurrence
and consumption. This affects our configuration for the trace lengths:
for short traces, a faulty location can be covered but might have
been rotated out of the current trace buffer. With long and short
traces alike, there is a chance that the location is reported later
in the output, missing the user’s attention. An example of this is
paraffins, where sharing is a source from which an incorrect
value is evaluated long before it is used. Potentially, this can be
further adjusted by introducing more laziness into programs by
making other adjustments, such as explicitly disabling sharing [34].

Limitations. The first limitation is represented in rfib, which
needed a surprisingly long trace for a rather simple program (cal-
culating Fibonacci numbers). Inspecting Figure 13, we observe that
the rfib program performs a cascading recursion and postpones
evaluation, with a lot of redundant re-computation producing a lot
of thunks. For our current reporting, it is necessary that the trace
length covers a coherent sequence (i.e., covers both creation and
resolution of thunks), but this coherence is only perceived when the
trace length is long enough. To mitigate this, users are presented
with a message when we detect that the trace length is not long
enough to cover the entire execution of the program.

We are slightly divided about this topic: On the one hand, many
functional pearls utilize recursion and laziness, and thus will trigger
a similar behavior for our traces. Especially for these cases, the
insights in the evaluation would have great potential for learning
and visualization. On the other hand, recursion of this type should
usually be written in a tail call-optimized fashion (see Figure 14),
which is less graceful but is preferable in performance and also
benefits the traces introduced by this work.

1 nfib :: Double -> Double
2 -- BUG: The following line contains a bug:
3 nfib n = if n < 1 then 1 else nfib (n-1) + nfib (n-2)

Figure 13: nofib-buggy’s rfib: The code first builds up a large

number of thunks using recursion before completing any

evaluation, posing a challenge for evaluation traces

Current evaluation traces are also limited by sharing [18]. Con-
sider the function in Figure 15: Here, the call to
three_partitions (n-1) is used in line 3 to generate triples of
integers to partition a list. There is an error in this function that

CSI: Haskell - Tracing Lazy Evaluations in a Functional Language IFL 2023, August 29–31, 2023, Braga, Portugal

1 fib :: Double -> Double
2 fib n = fib' n 0 1
3

4 fib' :: Double -> Double -> Double -> Double
5 fib' 0 a _ = a
6 fib' 1 _ b = b
7 fib' n a b = fib (n-1) b (a+b)

Figure 14: Alternative Fibonacci implementation that uti-

lizes tail-call optimization

1 rads_of_size_n radicals n =
2 [(C ri rj rk)
3 |(i,j,k) <- (three_partitions (n-1)),
4 (ri:ris) <- (remainders (radicals!i)),
5 (rj:rjs) <- (remainders (if (i==j) then (ri:ris)
6 else radicals!j)),
7 rk <- (if (j==k) then (rj:rjs) else radicals!k)]

Figure 15: Part of the paraffins example showcasing sharing

causes the 𝑘s to be invalid out-of-bound indices for the radicals
list. Since i and j are used in lines 4 and 5 respectively, the triplets
are evaluated and then the same result is shared later when the
invalid k is used in line 7. This means that the distance from pro-
duction to consumption increases due to sharing, which means
that there will be more unrelated evaluations prior to the error in
the trace. This could be addressed by post-processing traces and
removing those evaluations that are “unrelated” (such as those in
lines 4 and 5), but this would require a richer view of which values
are involved in each expression. This view could possibly be created
by adding provenance information to the values (see Section 5).

We spare the reader examples for readability, but it is easy to
imagine that evaluation traces are not always useful. Mainly we
see that traces either don’t contain relevant information, or there
is a major overhead attached, and we do not expect people to work
through 100+ lines of trace information. A prominent example of
this issue is minimax, for which the fault-location is covered, but
only in the sense that the relevant statement was touched. It is
not immediately clear what to do, as the issue originates from the
unused parts of the program. Providing too much information can
also discourage developers from reading error messages[28]. and
time spent in the wrong places is a waste and reduces trust in traces
and error messages[6, 33]. Thus, another crucial improvement is to
determine what criteria constitute the relevance of a trace for the
problem and only present them when applicable.

Discussion. Based on the limitations and highlights, our current
suggestion is to show evaluation traces for certain types of excep-
tions. The prime candidates are index errors, failed pattern matches,
and exceptions for dynamically typed values, such as those from
Data.Dynamic. These programs showed great results without any
real overhead and are a perfect point-in-case for evaluation traces.

From the data points that yield wrong results and have been
investigated using assertions, we see a trend that unit-level tests
provide better evaluation traces than system-level tests. In particu-
lar, the nofib-buggy/real data points that use a string comparison

for stdin and stdout did not really benefit from the evaluation
traces. We expect that lower-level tests and assertions are far more
useful, especially when combined with a sound approach to testing
and coverage.

We also recognize the size of the errors and sometimesmechanic
coverage of traces - as shown in Figure 6, some faults require long
traces to be covered, and the resulting output is bound to be verbose.
We do not consider these traces to be actionable due to their size
and the effort necessary to comprehend them. Nevertheless, we
hope that the tools can pick up the verbose trace information to
further filter and visualize critical elements of the code.

Currently, Prelude provides two functions error and
errorWithoutStackTrace. We suggest expanding this to errors
with (only) evaluation traces and a combination of stack and eval-
uation. The choice is left to individual exceptions as to whether
evaluation traces make a worthwhile addition. Another necessary
step is to provide a starting guide on how to read and use evalua-
tion traces. Typically, people google their exceptions to find some
help [6, 26], but with this newly introduced addition, that is not
an option. Thus, some kind of central starting point and tutorial
should accompany any changes.

5 NEXT STEPS

Evaluation Asserts. A potential new area is the construction of
evaluation asserts - using the enhanced coverage information, and a
known expression in the source code, one can formulate tests that
check for the (full) evaluation of an expression. While this comes
with some difficulties in implementation (e.g. not evaluating the
expression through the assert), there are certain areas where this
can support developers: One application of this is in debugging, for
which developers might want to check the state of their variables.
Although this is not exactly in the spirit of functional paradigms,
existing research [11] shows that Haskell developers often fall
back to imperative approaches during debugging. Furthermore,
we face functions such as foldr, foldr’ and co. whose results
are identical, but their internal traversal strategies differ. Another
application is for systems that revolve around or provide evaluation
strategies such as GHC itself. It can provide capabilities to test, e.g.
BangPatterns and data structures.

Study. An obvious next step is a detailed study. The examples
presented in this work highlight initial results but hardly represent
the real world. Thus, the authors plan to conduct a broader study
utilizing most of the nofib-buggy real data points and modern
examples from the HasBugs data set [4]. Such a study should help
to grasp how often evaluation trace information covers bugs and,
if so, how long the trace should be.

Furthermore, a study is necessary to estimate the computational
feasibility. Additional instrumentation always comes with a perfor-
mance cost, and the exploration in nofib-buggy is unfortunately
not representative of a complete evaluation.

Provenance of Values. One problem that arises when strictness
and sharing are involved is that an expression might have been
evaluated long before usage, such as the k in the paraffins example
(Figure 15). This means that many unrelated evaluations occur
between the production and consumption of a value, making the

IFL 2023, August 29–31, 2023, Braga, Portugal Matthías Páll Gissurarson and Leonhard Applis

trace less useful to find the source of the error. One way to address
is to attach provenance to values, highlighting the part of a trace
involved in the production of any values touched on in an error.

Environment Integration and Presentation. This work presents
basic steps and low-level implementation for evaluation traces, but
the findings might be diamonds in the rough. Especially for longer
traces of the real data points, guidance and assistance are necessary.
We touched on potential tools and extensions throughout the work,
which we would like to summarize:

First, summarizing and filtering traces is necessary to keep the
output human-readable, especially for long traces. Solutions could
cover filteringmodules or limit the depth andwidth of the presented
evaluation tree. In addition to trace data, there are opportunities
to accumulate data from multiple sources (test success, program
coverage, etc.) and perform program slicing [37]. This is essential
to scale to large programs. Another important integration is with
test and build frameworks. At the moment, traces are reported
on runtime exceptions, which is arguably not the best state of a
program to be in. Most of the time, software engineering utilizes
tests, and therefore evaluation traces should be presented in an
accessible way for test failures. We hope that in the future, Haskell
developers can write unit tests and investigate their evaluation for
anomalies, finding potential issues before they become problems.
Lastly, we did early sketches of integrating SARIF[3] based on tix-
and mix-files with a prototype. Transforming the information is
quite easy and can then be picked up from other popular tools such
as VSCode. Especially in light of the Haskell Language Server that
also targets VSCode, we hope that representation of coverage and
evaluation in the IDE can be a result of this work. However, such
tools should not only be based on solid data (this work), but must
also meet standards and needs of developers, drastically expanding
the scope. Thus, this work focus‘ lies on the creation, maintenance
and mapping of evaluation-traces.

Automated Fault Localization. Although this work covers fault-
localization as a manual task, automated fault localization is a
popular research topic with often great results [1, 17]. Automated
fault localization often exploits a spectrum of coverage per test to
find code that is suspiciously often involved in failing tests. These
approaches are based on the program coverage of strict languages
(Java, C), and revolve around expression or statement coverage. Di-
rectly copying these approaches might not be applicable to Haskell
— due to laziness, we might call expressions but not evaluate them.
Thus, focusing on evaluation over coverage is necessary to build a
spectrum of code that was executed, and not only touched.

Apart from adjustments necessary to reproduce existing ap-
proaches, the evaluation information can also form the basis of
novel techniques: normal spectrums are binary, things are covered
or not. With evaluation, we express the concept of full or partial
evaluations and can derive a continuous spectrum.

Optimization. We are aware that this is merely a prototype imple-
mentation. We hope that producing a non-invasive method for gath-
ering and reporting information on evaluation resonates positively
in the community, but know that we have made some arbitrary

design decisions. In this spirit, we do not consider the implemen-
tation done but are looking forward to feedback on this work and
towards an eventual GHC proposal.

Required trace length estimation. One pain point with the cur-
rent design of CSI: Haskell is that the trace length is fixed and
a value must be provided by the developer. One way to address
this could be to have a more dynamic trace, discarding entries not
involved in the current evaluation and keeping only the parts of
the trace which involve values which are currently accessible and
have not been garbage collected. This would involve a much deeper
integration with the runtime system and memory management,
but could be vital for tracing long-running programs, keeping both
relevant parts of the trace but still keeping memory requirements
manageable. Another approach would be to do static analysis of
the program to suggest a useful length for the trace, using the call
graph and structure of expressions to approximate the required
length within some order of magnitude. However, this would in-
volve more advanced termination checking than feasible for this
paper, but would reduce the guesswork in finding a good length. In
the interim, we suggest using a trace length of approximately 100
for smaller programs and approximately 1000 for larger ones (as
suggested by our experiments on the nofib-buggy data set) and
increase or decrease as necessary.

6 CONCLUSION

This paper presented an initial implementation to gather evaluation
traces and report them alongside current stack traces on runtime
exceptions. The approach utilizes boxes similar to regular HPC and
only requires additional flags for compilation — extending from
the program even into dependencies. This novel data was used to
improve the runtime exceptions reported with information on the
evaluation. We ran the changes on a subset of the nofib-buggy
data set, investigating at which point of the trace the faulty location
was reported. For 19 of the 21 data points, the fault was covered in
a trace of 1000 feet long, and most of the locations appeared in the
first 50 lines of the trace. In general, valuable information is covered
by the trace, but a current limitation is the size and verbosity of the
output. Most data points required two to 2 to 3 times more runtime
and about 50% more memory. Outliers in performance were based
on excessive amounts of thunks and a large number of modules.

Providing evaluation traces can help to spot certain errors, espe-
cially those related to lazy evaluation. The examples provided in
this paper show that evaluation traces help to establish the chain
of events behind certain errors better than a plain stack trace, as
due to lazy evaluation the origin of a problem and its occurrence
can be offset.

ACKNOWLEDGMENTS

We thank David Sands for his input on evaluation trees and theory,
and Matthew Sottile for his efforts on visualization and advice on
the design of CSI: Haskell. We thank the attendants of the IFL
workshop for their input, particularly the concept of evaluation
asserts. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the
Knuth and Alice Wallenberg Foundation.

CSI: Haskell - Tracing Lazy Evaluations in a Functional Language IFL 2023, August 29–31, 2023, Braga, Portugal

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and industrial conference
practice and research techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
IEEE, Windsor, UK, 89–98.

[2] TristanO.R. Allwood, Simon Peyton Jones, and Susan Eisenbach. 2009. Finding the
Needle: Stack Traces for GHC. In Proceedings of the 2nd ACM SIGPLAN Symposium
on Haskell (Edinburgh, Scotland) (Haskell ’09). Association for Computing Ma-
chinery, New York, NY, USA, 129–140. https://doi.org/10.1145/1596638.1596654

[3] Paul Anderson, Łucja Kot, Neil Gilmore, and David Vitek. 2019. SARIF-Enabled
Tooling to Encourage Gradual Technical Debt Reduction. In 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt). IEEE/ACM, Montreal, QC,
Canada, 71–72. https://doi.org/10.1109/TechDebt.2019.00024

[4] Leonhard Applis and Annibale Panichella. 2023. HasBugs - Handpicked Haskell
Bugs. In 2023 IEEE/ACM 20th International Conference on Mining Software Reposi-
tories (MSR). IEEE/ACM, Melbourne, Australia, 223–227. https://doi.org/10.1109/
MSR59073.2023.00040

[5] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error mes-
sages?. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, IEEE/ACM, Buenos Aires, Argentina, 575–585.

[6] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
https://doi.org/10.1145/3344429.3372508

[7] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (Atlanta, Georgia) (SIGSOFT ’08/FSE-16). Association for ComputingMa-
chinery, New York, NY, USA, 308–318. https://doi.org/10.1145/1453101.1453146

[8] Yen-Chi Chen. 2017. A tutorial on kernel density estimation and recent advances.
Biostatistics & Epidemiology 1, 1 (2017), 161–187. https://doi.org/10.1080/24709360.
2017.1396742 arXiv:https://doi.org/10.1080/24709360.2017.1396742

[9] Olaf Chitil, Colin Runciman, and Malcolm Wallace. 2002. Transforming Haskell
for tracing. In Symposium on Implementation and Application of Functional Lan-
guages. Springer, Springer, Madrid, Spain, 165–181.

[10] Maarten Faddegon and Olaf Chitil. 2015. Algorithmic debugging of real-world
haskell programs: deriving dependencies from the cost centre stack. ACM SIG-
PLAN Notices 50, 6 (2015), 33–42.

[11] Kasra Ferdowsi. [n.d.]. Towards Human-Centered Types & Type Debugging.
Plateau Workshop.

[12] GHC Contributors. 2021. GHC 8.10.4 users guide. https://downloads.haskell.
org/~ghc/8.10.4/docs/html/users_guide/index.html

[13] Andy Gill. 2000. Debugging Haskell by Observing Intermediate Data Structures.
Electron. Notes Theor. Comput. Sci. 41, 1 (2000), 1.

[14] Andy Gill and Colin Runciman. 2007. Haskell Program Coverage. In Proceedings
of the ACM SIGPLANWorkshop on Haskell Workshop (Freiburg, Germany) (Haskell
’07). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/1291201.1291203

[15] William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica
Piskac. 2019. Lazy Counterfactual Symbolic Execution. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 411–424. https://doi.org/10.1145/3314221.3314618

[16] A. Hamou-Lhadj and T. Lethbridge. 2006. Summarizing the Content of Large
Traces to Facilitate the Understanding of the Behaviour of a Software System. In
14th IEEE International Conference on Program Comprehension (ICPC’06). IEEE,
Athens, Greece, 181–190. https://doi.org/10.1109/ICPC.2006.45

[17] Tom Janssen, Rui Abreu, and Arjan JC Van Gemund. 2009. Zoltar: A toolset
for automatic fault localization. In 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, IEEE, Auckland, New Zealand, 662–664.

[18] John Launchbury. 1993. A natural semantics for lazy evaluation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, Charleston, SC, USA, 144–154.

[19] Simon Marlow. 2012. HIW 2012: Why can’t I get a stack trace? ACM, Copenhagen,
Denmark. https://www.youtube.com/watch?v=J0c4L-AURDQ

[20] Lee Naish and Tim Barbour. 1996. Towards a portable lazy functional declarative
debugger. Australian Computer Science Communications 18 (1996), 401–408.

[21] Henrik Nilsson and Jan Sparud. 1997. The evaluation dependence tree as a basis
for lazy functional debugging. Automated software engineering 4 (1997), 121–150.

[22] Kunihiro Noda, Takashi Kobayashi, Tatsuya Toda, and Noritoshi Atsumi. 2017.
Identifying Core Objects for Trace Summarization Using Reference Relations and
Access Analysis. In 2017 IEEE 41st Annual Computer Software and Applications

Conference (COMPSAC), Vol. 1. IEEE, Turin, Italy, 13–22. https://doi.org/10.1109/
COMPSAC.2017.142

[23] Will Partain. 1993. The nofib benchmark suite of Haskell programs. In Func-
tional Programming, Glasgow 1992: Proceedings of the 1992 Glasgow Workshop on
Functional Programming, Ayr, Scotland, 6–8 July 1992. Springer, Springer, Ayr,
Scotland, 195–202.

[24] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. 2018. Metacognitive difficulties faced by novice programmers
in automated assessment tools. In Proceedings of the 2018 ACM Conference on
International Computing Education Research. ACM, Espoo, Finland, 41–50.

[25] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On novices’ interaction with
compiler error messages: A human factors approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research. ACM, Tacoma,
WA, USA, 74–82.

[26] Mohammad Masudur Rahman, Shamima Yeasmin, and Chanchal K. Roy. 2014.
Towards a context-aware IDE-based meta search engine for recommendation
about programming errors and exceptions. In 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). IEEE, Antwerp, Belgium, 194–203. https://doi.org/10.1109/CSMR-
WCRE.2014.6747170

[27] Ranjit Jhala. 2020. LiquidHaskell is a GHC Plugin. https://ucsd-progsys.github.
io/liquidhaskell-blog/2020/08/20/lh-as-a-ghc-plugin.lhs/

[28] Peter C. Rigby and Suzanne Thompson. 2005. Study of Novice Programmers Using
Eclipse and Gild. In Proceedings of the 2005 OOPSLA Workshop on Eclipse Technol-
ogy EXchange (San Diego, California) (eclipse ’05). Association for Computing Ma-
chinery, New York, NY, USA, 105–109. https://doi.org/10.1145/1117696.1117718

[29] Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. 2010. Do stack traces
help developers fix bugs?. In 2010 7th IEEE working conference on mining software
repositories (MSR 2010). IEEE, IEEE, Cape Town, South Africa, 118–121.

[30] Peter Sestoft. 1997. Deriving a lazy abstract machine. Journal of Functional
Programming 7, 3 (1997), 231–264.

[31] Dale Shaffer, Wendy Doube, and Juhani Tuovinen. 2003. Applying Cognitive
load theory to computer science education.. In PPIG, Vol. 1. Citeseer, M. Petre &
D. Budgen (Eds.), Keele, UK, 333–346.

[32] Josep Silva. 2007. The Buggy Benchmarks Collection. Universitat Politecnica De
Valencia. Josep Silva self-published on his website / university.

[33] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What
They Mean. Adv. in Hum.-Comp. Int. 2010, Article 3 (jan 2010), 26 pages. https:
//doi.org/10.1155/2010/602570

[34] Marco Vassena, Joachim Breitner, and Alejandro Russo. 2017. Securing Concur-
rent Lazy Programs Against Information Leakage. In 2017 IEEE 30th Computer
Security Foundations Symposium (CSF). IEEE, Santa Barbara, CA, USA, 37–52.
https://doi.org/10.1109/CSF.2017.39

[35] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones. 2014. Refinement types for Haskell. In Proceedings of the 19th ACMSIGPLAN
international conference on Functional programming. 269–282.

[36] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. 2001.
Multiple-View Tracing for Haskell: a New Hat. In 2001 ACM SIGPLAN Haskell
Workshop, Ralf Hinze (Ed.). Firenze, Italy. https://kar.kent.ac.uk/13566/ Univer-
siteit Utrecht UU-CS-2001-23. Final proceedings to appear in ENTCS 59(2).

[37] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 1,
4 (1984), 352–357.

[38] John Wrenn and Shriram Krishnamurthi. 2017. Error Messages Are Classi-
fiers: A Process to Design and Evaluate Error Messages. In Proceedings of the
2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Vancouver, BC, Canada) (Onward!
2017). Association for Computing Machinery, New York, NY, USA, 134–147.
https://doi.org/10.1145/3133850.3133862

[39] Zhenyu Zhang, W. K. Chan, T. H. Tse, Bo Jiang, and Xinming Wang. 2009. Cap-
turing Propagation of Infected Program States (ESEC/FSE ’09). Association for
Computing Machinery, New York, NY, USA, 43–52. https://doi.org/10.1145/
1595696.1595705

https://doi.org/10.1145/1596638.1596654
https://doi.org/10.1109/TechDebt.2019.00024
https://doi.org/10.1109/MSR59073.2023.00040
https://doi.org/10.1109/MSR59073.2023.00040
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/1453101.1453146
https://doi.org/10.1080/24709360.2017.1396742
https://doi.org/10.1080/24709360.2017.1396742
http://arxiv.org/abs/https://doi.org/10.1080/24709360.2017.1396742
https://downloads.haskell.org/~ghc/8.10.4/docs/html/users_guide/index.html
https://downloads.haskell.org/~ghc/8.10.4/docs/html/users_guide/index.html
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1109/ICPC.2006.45
https://www.youtube.com/watch?v=J0c4L-AURDQ
https://doi.org/10.1109/COMPSAC.2017.142
https://doi.org/10.1109/COMPSAC.2017.142
https://doi.org/10.1109/CSMR-WCRE.2014.6747170
https://doi.org/10.1109/CSMR-WCRE.2014.6747170
https://ucsd-progsys.github.io/liquidhaskell-blog/2020/08/20/lh-as-a-ghc-plugin.lhs/
https://ucsd-progsys.github.io/liquidhaskell-blog/2020/08/20/lh-as-a-ghc-plugin.lhs/
https://doi.org/10.1145/1117696.1117718
https://doi.org/10.1155/2010/602570
https://doi.org/10.1155/2010/602570
https://doi.org/10.1109/CSF.2017.39
https://kar.kent.ac.uk/13566/
https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1145/1595696.1595705
https://doi.org/10.1145/1595696.1595705

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Approach
	3.1 Evaluation Trees
	3.2 Trace Data
	3.3 Example
	3.4 Persistence and Tix Upgrades
	3.5 Output
	3.6 Summarization and Presentation
	3.7 Data

	4 Initial Results
	5 Next Steps
	6 Conclusion
	Acknowledgments
	References

