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“GHC accepts source code as input and returns errors as output.”
- Matti’s SRC presentation, the main stage at ICFP, 2019






Abstract

Modern programs in languages like Haskell include a lot of information
beyond what is strictly required for compilation, such as additional type
information, unit tests and properties. This information is often used for
post-compilation verification, by running the tests to verify that the code-as-
written matches the specification provided by the types and properties. In
this thesis, we explore ways of using this additional information to aid the de-
veloper during development. Firstly, we explore the integration of program
synthesis into GHC compiler error messages using typed-hole suggestions
to aid the completion of partial programs during development. Secondly,
we present PropR, a tool based on type-driven synthesis aided by property-
based testing and fault-localization in conjunction with genetic algorithms
to automatically repair buggy programs, and evaluate its effectiveness. Fi-
nally, we present WRIT, a GHC plugin that allows developers to circumvent
a too-restrictive type system in some cases in order to compile, run and test
programs that are ill-typed but still executable, and explore its use in the
context of information flow security for Haskell.
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Introduction

1.1 Motivation and Overview

When developers write programs, they have a specific goal in mind and an
idea of how to achieve this goal. They often model this behavior in the source
code itself by providing type alongside their functions and variables, and pro-
grams sometimes have a suite of tests to check that they run as intended. This
means that the source code, provides the compiler with a lot of information
beyond what is strictly required for the program to run as intended. The tests
are checked only after the code has been written, and the type annotations
are stricter than necessary or model restrictions that are checked at compile
time but have no impact on runtime behavior. A lot of this information is cur-
rently only used in a yes-or-no manner: does the type of the code match the
type annotations, do the tests succeed or fail? These are very useful questions
to ask, but they do not guide the developer towards a correct implementa-
tion. Half of the time spent programming is spent on debugging [3], meaning
that developers are working on almost complete programs. This means that
there are usually some tests available (at least for the bug being fixed), and the
types involved have stabilized. This can place a lot of constraints on the pos-
sible valid implementations of the program, which we could use to synthesize
fixes to suggest to the developer to guide them towards a correct solution or
even automatically repair an incorrect implementation. But how should we
target our efforts? Program synthesis and constraint solving can be quite
computationally heavy, and it is not tractable to synthesize whole programs,
so a more focused approach is required. When much of the specification is
inferred, it can also be hard to place blame on particular expressions: which
one is the one that’s wrong, the function or the argument? This brings us
to the titular focus of this thesis: typed-holes. Typed-holes allow developers
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to specify a hole in a program, which must be filled. These allow us to focus
our synthesis efforts on the particular part of the program that the developer
is most interested in, and avoid having to assign blame to any particular ex-
pression: the developer assigns blame by replacing the suspect expressions
with typed-holes. This means we can improve the development experience
where it counts the most: on the parts the developer’s attention is directed
at.

By using typed-hole directed synthesis to make more use out of the infor-
mation already provided by the developers, we can make debugging easier
or even completely automated while requiring little additional effort on the
behalf of the developer.

Overview In this thesis, I (with the help of my paper co-authors) explore
a few ways to go beyond yes-or-no responses by using typed-hole directed
synthesis to guide the programmer towards a correct implementation via:

« typed-hole suggestions, error message additions that tell the program-
mer what they could use to replace a hole in the program with and the
associated hole-fit plugins, compiler plugins that allow developers to
customize the behavior of typed-hole suggestions,

« automated program repair, a technique to automatically fix programs
based on to their type specifications, tests, and properties,

« and finally, automatic coercions that allow the users to weaken the
type guarantees in cases where they are too restrictive, allowing them
to make better use of available tests.

1.2 Background and Related Work

To get a better understanding of the work in this thesis and its context, we
must elaborate on the components involved and the related work in the field.
Specifically, we introduce the Haskell programming language and the Glas-
gow Haskell Compiler with which our explorations have been conducted,
we give a brief overview of program synthesis and the specific techniques
we use to synthesize fixes, we explain property-based testing that allows us
to verify our synthesis, have look at automatic program repair and genetic
programming that allows us to scale program repair beyond single fixes, and
finally, a short presentation of weak runtime-irrelevant typing and how it
can be used to allow testing of ill-typed programs.
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1.2.1 Haskell

Our explorations are conducted in the functional programming language
Haskell, which sports a strong type-system with rich type-inference, and
non-strict evaluation by-default. This means that analysis can in many cases
be done on an expression-by-expression basis, without having to consider
side effects. The strong type-system and type-inference means that the in-
formation that the user provides can be further extrapolated, and the popular
property-based testing framework QuickCheck (see section 1.2.6) pushes this
even further, allowing users to write properties that can be extrapolated into
tests that cover a great deal more cases than a comparable amount of simple
unit tests.

1.2.2 Glasgow Haskell Compiler (GHC)

The Glasgow Haskell Compiler (GHC) is a state-of-the-art, industrial strength
compiler for Haskell, widely used in academia and industry. GHC has a few
features particularly relevant for our exploration:

+ GHC has support for typed-holes (see section 1.2.3), which we can use
to direct our efforts and query the compiler for relevant information,

« GHC has a compiler plugin infrastructure that allows you to intervene
at certain stages of compilation (such as after desugaring, or during
type-checking) and inject your own behavior, making it particularly
suitable for experimentation as you can modify parts of the compila-
tion pipeline without digging into the compiler’s internals, and

+ GHC s easy to extend, as I did with my initial valid hole-fit suggestions
(presented in the first paper in this thesis [5]) and the subsequent hole-
fit plugins (see section 1.2.3). These were initially implemented by me
as a fork of the compiler and were eventually integrated into the official
compiler release in version 8.6 and 8.10 respectively.

1.2.3 Typed-Holes

A typed-hole is a hole in the context of a program, with a type and the
constraints on that type inferred by the compiler as if the hole was a free-
variable. Inspired by a similar feature in Agda, a bare-bones implementation
of typed-holes was initially added to GHC in version 7.8 [6]. An example of
the typed-hole in (- "hello, world") :: [String] can be seen in fig. 1.1.
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Prelude> (_ "hello, world") :: [String]
<interactive>:1:2: error:

* Found hole: _ :: [Char] -> [String]
e In the expression: _
In the expression: (_ "hello, world") :: [String]
In an equation for ‘it’: it = (_ "hello, world") :: [String]
* Relevant bindings include
it :: [String] (bound at <interactive>:1:1)

Figure 1.1: An example of a typed-hole error message in GHCi 8.10.6.

Finding Valid Hole-Fits

Valid hole-fits were inspired by typed-hole suggestions in PureScript, but
automatic proof-search was available prior in Agda as the auto command

[6].

Valid hole fits include

lines :: String -> [String]

words :: String -> [String]

repeat :: forall a. a -> [a]
with repeat @String

return :: forall (m :: *x -> %) a. Monad m =>a ->m a
with return @[] @String

fail :: forall (m :: % -> %) a. MonadFail m => String -> m a
with fail @[] @String

pure :: forall (f :: *x -> x) a. Applicative f => a -> f a

with pure @[] @String
(Some hole fits suppressed; ...)

Figure 1.2: An example of valid hole-fits in GHCI, continued from the out-
put in fig. 1.1. Presented without imports

As detailed in the first paper in this thesis and my master’s thesis [5, 6],
valid hole-fits are found by constructing an appropriate equality type for
each of the candidate hole-fits and invoking GHC’s type-checker. The can-
didate hole-fits are drawn from the global environment (imports, top-level
functions, etc.) or the local context (such as function arguments or locally
let- or where-bound variables). In the hole in fig. 1.2, the type of the candi-
date hole-fits are e.g. the types of the valid hole-fits, String -> [String] and
forall a. a -> [al, butalso the types of other, non-valid candidates such as
the type of otherwise :: Bool,thetypeofmap :: (a -> b) -> [a] -> [b],

4
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thetypeof [1 :: forall a. [al, etc. We feed the type-checker with each of
the equality types, as well as the hole’s context and any relevant constraints?,
and ask the solver to solve the equality. If a solution is possible, then there
is some way to unify the type-variables in the type of the hole and the type
of the candidate hole-fit so that the types match (e.g. setting a to String in
forall a. a -> [a] to get String -> [String]), and the candidate hole-fit
is then a valid-hole fit.

Local context Global environment

Candidates

/LI

Type checker/
Constraint Solver

Generate subtyping wrapper
from the type of the candidate
to the type of the hole

Relevant Constraints —+

Givens —

Filter by checking
whether type can

Type of hole ——
be made to match

Sort by approximate relevance
(by size or by subsumption)

Output

Figure 1.3: An overview of how valid hole-fit suggestions are found [6].

An overview of the process of finding valid hole-fits is shown in fig. 1.3.

Refinement Hole-Fits

Of special interest are the refinement hole-fits, which are an extension of
valid hole-fits not found in PureScript [5]. For refinement hole-fits, we al-
low the candidate to have more arguments than the hole, where the number
of additional arguments, 7, is defined as the refinement level. This allows
us to find fits like foldr (_a :: Int -> Int -> Int) (_b :: Int) for the

1As an example of relevant constraints, the hole in (show _) will get the type a where
a is an unbound type-variable and the relevant constraints is the set {Show a}.
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hole _ :: [Int] -> Int, where _a :: Int -> Int -> Int and _b :: Int
are two new holes (here the refinement level is 2). An example of refine-
ment hole-fits for the hole in fig. 1.1 can be seen in fig. 1.4.

Valid refinement hole fits include
iterate (_ :: String -> String)
where iterate :: forall a. (a -> a) -> a -> [a]
with iterate @String
replicate (_ :: Int)
where replicate :: forall a. Int -> a -> [a]
with replicate @String
mapM (_ :: Char -> [Char])
where mapM :: forall (t :: *x -> x) (m :: *x -> %) a b.
(Traversable t, Monad m) =>
(@ ->mb) ->ta->m(tb)
with mapM @[] @[] @Char @Char
traverse (_ :: Char -> [Char])
where traverse :: forall (t :: x -> %) (f :: x -> %) a b.
(Traversable t, Applicative f) =>
(a ->fb) ->ta->f (tbhb)
with traverse @[] @[] @Char @Char

map (- :: Char -> String)
where map :: forall a b. (a -> b) -> [a] -> [b]
with map @Char @String
scanl (_ :: String -> Char -> String) (_ :: [Char])
where scanl :: forall b a. (b ->a ->b) ->b -> [a] -> [b]

with scanl @String @Char
(Some refinement hole fits suppressed; ...)

Figure 1.4: An example of refinement hole-fits in GHCi, with the refinement
level set to 2. Continued from the output in fig. 1.2. Presented
without imports.

Refinement hole-fits are particularly useful for synthesis, since we can
recursively fill the additional holes, allowing us to synthesize sophisticated
expressions as hole-fits. Valid hole-fits and refinement hole-fits are detailed
in the first paper in this thesis and in my master’s thesis [5, 6].

Hole-Fit Plugins

Hole-fit plugins are a recent addition of mine to GHC’s plugin infrastructure
that allow plugin authors to customize the behavior of valid hole-fits, by
manipulating what candidates get checked for validity and which of those
hole-fits found to be valid are shown to users [7].
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CandPlugin :: TypedHole -> [HoleFitCandidate] -> TcM [HoleFitCandidate]

Code

Candidates Candidate Plugins

Typed-Hole

TcM Context \

Fits Fit Plugins

Type Checker

Error Message
FitPlugin :: TypedHole -> [HoleFit] -> TcM [HoleFit]

Figure 1.5: An overview of typed-hole plugins [7].

This enables us to e.g. filter out candidates from modules and modify the
order in which the fits are returned, allowing for more sophisticated heuris-
tics. It also allows us to modify the synthesis on a per-hole basis, for instance
by writing a plugin that allows us to inject expressions mined from the con-
text as candidate hole-fits for program repair. An overview of hole-fit-plugins
is shown in fig. 1.52.

1.2.4 Program Synthesis

Program synthesis is the generation of code based on a high-level specifica-
tion of how that program should behave [19]. As there is an infinite amount
of programs, efficiency is the key to practical program synthesis. One way to
restrict the search space is to use input-output examples, such as in FlashFill
[10]. Using only input-output examples can be restrictive, but works well
when the target language is domain specific: this limits the search space by
reducing the possible programs that can be written in a language. Another
way to efficiently synthesize programs is to focus the synthesis on parts of
the program, like with sketching, where users write a high-level sketch of a
program but leave holes for the computer to synthesize low-level details [19].

Type-directed synthesis is especially powerful, since there are a lot more
ill-typed programs than well-typed ones, and type-errors can be detected
very early [16]. How well type-directed synthesis can perform depends on
the expressiveness of the type-system. For instance, expressive type-systems
like the refinement types used in SynQuid allow developers to decorate the
types with predicates from a decidable logic, meaning they can more pre-
cisely specify which programs are valid, which improve the program syn-
thesis [16]. However, more expressiveness in the type-system comes at the

Zpresented as part of the Haskell Implementors’ Workshop and the ICFP student research
competition in 2019 [7].
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expense of type-inference. In Haskell, the type of most programs can be
inferred without the developers having to provide type annotations. Type-
directed synthesis also has a long history in Haskell, such as the type-based
Djinn synthesizer, which can synthesize Haskell expressions based on the
type [1]. A more recent Haskell based synthesizer is Hoogle+, which uses
type-guided abstract refinement to find programs composed from functions
in popular Haskell libraries based on a type and input-output examples [11].
Typed-hole directed synthesis is a combination of using the contextual in-
formation as is done in sketching and using the type information to restrict
the search space to only those programs that satisfy the type, such as the
one used in Myth [14] and in the work of Perelman et al. for partial expres-
sion completion in C# [15], but differs in that it is integrated directly into the
compiler itself. By integrating the synthesis into the compiler we can ensure
the compatibility of the synthesized hole-fits, since the checking is done by
the type-checker itself.

1.2.5 Automatic Program Repair

A practical application of program synthesis is automated program repair,
where we fix bugs in programs according to its specification. There is al-
ready some examples of type-directed program repair such as Lifty, that uses
the refinement type-based technique from SynQuid to repair security policy
violations in a domain specific language [17]. To investigate the use of type-
directed synthesis for automated program repair, we implemented PropR, a
genetic-search-based program repair tool that combines the typed-hole di-
rected synthesis from my first paper with property-based specifications to
automatically repair Haskell programs [8] (the second paper of this thesis).
We’ve already covered the type-directed synthesis using valid-hole fits in sec-
tion 1.2.3, but for an overview of genetic-search-based program repair and
property-based testing, see section 1.2.5 and section 1.2.6 below.

Genetic Program Repair

Genetic program repair is a successful generate-and-validate-based approach
to automated program repair based on genetic search [12, 13]. The approach
is exemplified by GenProg, a statement based automatic program repair for
C-programs, which uses unit tests to determine the locations of faults and
validity of fixes [12]. The quality of a fix is evaluated based on how many
unit tests they pass, and two fixes are combined into a new fix by combining
partial fixes into a new fix, preferring well-perfoming fixes to low-perfoming
fixes [12]. For some programs, this approach can find fixes that completely
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eliminate the bug found by the tests [12]. Current state-of-the-art program
repair tools like Astor have been based on the same approach, but mainly
target Java [13]. A genetic approach allows us to focus on finding simple
partial fixes and combining them, meaning we can do repair on a per-fault
basis rather than having to consider the whole program.

1.2.6 Property-Based Testing

Property-based testing frameworks such as QuickCheck [4] allow users to
specify properties that functions must satisfy, and can be viewed as an intu-
itive way of specifying what constraints should hold for the program. These
properties are tested by randomly generating data based on the type of the
property and checking that the property holds. This allows one property to
be the equivalent of hundreds or thousands of unit tests, and also generates
a minimal counter-example when a property does not hold. These counter-
examples can then be used in conjunction with program coverage to localize
the error by noting which expressions were involved in the evaluation lead-
ing to the failure of the tests. We use properties and their counter-examples
in the second paper of this thesis to do automated program repair [8].

1.2.7 Weak Runtime-Irrelevant Typing

Weak runtime-irrelevant typing is introduced in the third paper of this the-
sis [9]. When we use sophisticated type-systems a problem emerges: how
can we test programs that fail to compile due to a type error? This can
sometimes be the case when the program-as-written could be run and tested,
but overzealous type-annotations prevent it from type-checking. This means
that the types involved in the error are runtime-irrelevant, meaning that their
runtime representation is the same, but there is additional type information
that separates them such as a phantom type parameter. A common prac-
tice in Haskell is to use phantom type parameters to model non-functional
properties in the type system, such as modeling information flow control us-
ing the MAC library [18]. In the third paper in this thesis [9], we present
the WRIT plugin which allows users to specify certain additional rules in
the type-system that can be used to improve the error message by turning
cryptic type-system unification errors into domain specific ones or turn the
type-errors into warnings using GHC’s safe zero-cost coercions [2, 9]. This
means we can compile and run the ill-typed programs in question, by disre-
garding their non-functional type annotations and allowing us to test their
functional correctness using tests or properties, which is crucial for auto-
matic program repair. This opens up an exciting avenue for further research
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into automatic repair of security annotated programs [9].

1.3 Thesis structure

Paper 1: Suggesting Valid Hole Fits for Typed-Holes (Experience Report) [5]

Suggesting Valid Hole Fits documents the implementation and design of the
synthesis of valid hole-fits as they initially appeared in GHC. Of particular
interest is the sorting of hole-fits by "relevance", using either the simplistic
number of type constructors (the "size" of the type) heuristic, and the more
advanced subsumption sorting, where more "specific” types are treated as
more "relevant" than more general types.

Statement of contributions Single authored

Appeared in: Haskell Symposium 2018

Paper 2: PropR: Property-Based Automatic Program Repair [8]

In the PropR paper, we introduce PropR, a tool that automatically repairs
Haskell programs using a combination of typed-hole synthesis to repair pro-
gram expressions with well-typed replacements and using QuickCheck prop-
erties to verify the repair. We use GHC’s Haskell program coverage func-
tionality to figure out which expressions are involved in a fault based on
QuickCheck generated counter-examples to failing properties, a typed-hole
valid hole-fit plugin to generate well-typed replacements as fixes for said
expressions, and a genetic algorithm to select and combine fixes based on
QuickCheck property results after applying a fix.

Statement of contributions I was the main driver behind the paper in
conjunction with Leonhard Applis. I implemented the synthesis and repair
as well as writing the technical section of the paper and parts of the intro,
whereas Leonhard focused on the genetic repair algorithm and the experi-
mental verification.

Preliminary version, accepted to the International Conference on Software
Engineering 2022 (ICSE ’22)

10
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Paper 3: Short Paper: Weak Runtime-Irrelevant Typing for Security [9]

In this paper, we introduce the WRIT-plugin. The WRIT plugin allows users
to add specific additional rules to GHC’s type system that allow programs to
compile that are ill-typed according to GHC but for which we know that the
type-errors are runtime-irrelevant way, i.e. the differences in types would not
result in a crash or incorrect functional behavior. This allows us to e.g. com-
pile programs that have security errors (as defined by Russo’s MAC library),
but are otherwise functionally correct, meaning that we can run automatic
QuickCheck tests even in the presence of type errors.

Statement of contributions Both authors contributed equally to the pa-
per. I focused on the technical and implementation aspect, as well as the
judgements that defined the behavior of the system.

Appeared in: Programming Languages and Security 2020

11
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bstract. Type systems allow programmers to communicate a par-
tial specification of their program to the compiler using types,
which can then be used to check that the implementation matches the
specification. But can the types be used to aid programmers during de-
velopment? In this experience report I describe the design and imple-
mentation of my lightweight and practical extension to the typed-holes
of GHC that improves user experience by adding a list of valid hole fits
and refinement hole fits to the error message of typed-holes. By lever-
aging the type checker, these fits are selected from identifiers in scope
such that if the hole is substituted with a valid hole fit, the resulting
expression is guaranteed to type check.






Found hole: _ :: [Int] -> Int

In the expression: _ :: [Int] -> Int
In an equation for ‘it’: it = _ :: [Int] -> Int
Relevant bindings include

it :: [Int] -> Int (bound at <interactive>:4:1)
Valid hole fits include

head :: forall a. [a] -> a

last :: forall a. [a] -> a

length :: forall (t :: * -> x) a. Foldable t => t a -> Int

maximum :: forall (t :: * -> x) a.

(Foldable t, Ord a) => t a -> a
minimum :: forall (t :: * -> x) a.

(Foldable t, Ord a) => t a -> a
product :: forall (t :: * -> %) a.
(Foldable t, Num a) => t a -> a
(Some hole fits suppressed; use
-fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)
Valid refinement hole fits include
foldll (-~ :: Int -> Int -> Int)

where foldll :: forall (t :: % -> x) a. Foldable t =>
(a ->a ->a) ->ta->a
foldrl (— :: Int -> Int -> Int)
where foldrl :: forall (t :: * -> %) a. Foldable t =>
(a ->a ->a) ->ta->a
foldl (— :: Int -> Int -> Int) (_ :: Int)
where foldl :: forall (t :: * -> %) b a. Foldable t =>
(b ->a ->b) ->b ->ta->b
foldr (-~ :: Int -> Int -> Int) (- :: Int)
where foldr :: forall (t :: % -> %) a b. Foldable t =>

(@a->b->b) ->b->ta->b

($) (= :: [Int] -> Int)

where ($) :: forall a b. (a ->b) ->a ->b
const (— :: Int)

where const :: forall a b. a -> b -> a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

Figure 2.1: Typed-hole error message extended with hole fits.
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2.1 Introduction

When writing documentation for libraries, the Haskell community often goes
the route of having descriptive function names and clear types that leverage
type synonyms in order to push much of the documentation to the type-level.
As developers program in Haskell, they often use a style of programming
called Type-Driven Development. They write out the input and output types
of functions before writing the functions themselves [3]. A consequence of
this approach is that the compiler has a lot of type information that is only
used during type checking. Can we make better use of the extra informa-
tion and type-level documentation and improve user experience? According
to the GitHub survey [5], user experience is the third most important factor
when choosing open source software, after stability and security, and thus
an important consideration.

We can leverage the richness of type information in library documenta-
tion along with users’ type signatures by extending typed-hole error mes-
sages with a list of valid hole fits and refinement hole fits. These allow users
to find relevant functions and constants when a typed-hole is encountered:

Valid hole fits and refinement hole fits can be used to effectively aid de-
velopment in many scenarios by allowing users to view and search type-level
documentation directly, thus improving the user experience.

Note: in the interest of reducing noise in the output in this report, I
have opted to show only the fits themselves, and not the type application
nor provenance of the fit as displayed in the ouput by default. The amount
of detail in the output is controlled by flags; the format used here is achieved
by setting the - funclutter-valid-hole-fits flag. An example of the full
default output can be seen in figure 2.2.

product :: forall (t :: x -> %) a.
(Foldable t, Num a) => t a -> a
with product @[] @Int
(imported from ‘Prelude’
(and originally defined in ‘Data.Foldable’))

Figure 2.2: The full output forafitfor — :: [Int] -> Int.
2.1.1 Contributions

In this experience report, I do the following:

« Describe valid hole fits and refinement hole fits as I have implemented
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them in GHC. Valid hole fits allow users to tap in to the extra type
information available during compilation or interactively using GHCi,
while refinement hole fits extend valid hole fits beyond identifiers to
find functions that need additional arguments.

» Provide a detailed explanation of how I have implemented valid hole
fits and refinement hole fits in GHC, and how I solved technical hurdles
along the way.

« Show the usefulness of hole fits in case studies on an introductory ex-
ercise and when using the lens library.

« Finally, I present an application of valid hole fits to libraries using
type-in-type to annotate functions with non-functional properties, and
show an example.

2.1.2 Background

Typed-Holes in GHC were introduced in version 7.8 and implemented by
Simon Peyton Jones, Sean Leather and Thijs Alkemade [7]. Inspired by a
similar feature in Agda, typed-holes allow a user of GHC to have “holes” in
their code, using an underscore (—) in place of an expression. When GHC
encounters a typed-hole, it generates an error with information about that
hole, such as its location, the (possibly inferred) type of the hole and rele-
vant local bindings [18]. Typed-holes can also be given names by appending
characters, e.g. _a and _b, to allow users to distinguish between holes.

Valid Hole Fits: We use the type information available in typed-holes to
make them more useful for programmers, by extending the typed-hole error
message with a list of valid hole fits. Valid hole fits are expressions which
the hole can be replaced with directly, and the resulting expression will type
check. An example of valid hole fits can be seen in figure 2.1.

Refinement Hole Fits: It is often the case that a single identifier is
not enough to implement the desired function, such as when writing the
product function (foldr (%) 1). To suggest useful hole fits for these cases,
we introduce refinement hole fits. Refinement hole fits are valid hole fits that
have one or more additional holes in them. The number of additional holes is
controlled by the refinement level, set via - frefinement-level-hole-fits.
A refinement level of N means that hole fits with up to N additional holes
in them will be considered. An example of refinement hole fits can be seen
in figure 2.1, in which the refinement level is 2.
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2.2 Case Studies

To show that valid hole fits and refinement hole fits can be used to effectively
aid development, we consider two cases, an introductory programming exer-
cise where we use the Prelude and an advanced case using the lens library.

2.2.1 Exercise from Programming in Haskell

To study how the valid hole fits perform when used by beginners, I looked
at an example from Graham Hutton’s introductory text, Programming in
Haskell [9]. In exercise 4.8.1, students are asked to implement halve ::
[al -> ([a],[al), which should split a list of even length into two halves.
With refinement hole fits enabled, we can query GHCi by writing:

Prelude> _ :: [a] -> ([al, [al)

In response, GHCi will then generate a typed-hole error, including a list of
valid refinement hole fits:

Valid refinement hole fits include

break (— :: al -> Bool)
where break :: forall a.
(a -> Bool) -> [a] -> ([al, [al)
span (— :: al -> Bool)
where span :: forall a.
(a -> Bool) -> [a] -> ([a], [a])
splitAt (- :: Int)
where splitAt :: forall a. Int -> [a] -> ([a], [a])
mapM (- :: al -> ([al], al))
where mapM :: forall (t :: * -> %) (m :: ¥ -> %) a b.

(Traversable t, Monad m) =>
(a -=>mb) ->ta->m(tb)
traverse (— :: al -> ([al], al))
where traverse :: forall (t :: x -> %) (f :: x -> %) a b.
(Traversable t, Applicative f) =>
(a -=>fb) ->ta->Ff (thb)
const (_ :: ([all, [all))
where const :: forall a b. a -> b -> a
(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

One of the suggested fits is the splitAt (- :: Int) refinement, and
given that the task is to split a list, this seems like a good fit. In this way, the
student can discover the splitAt function from the prelude, and a correct
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solution (halve xs = splitAt (length xs “div’ 2) xs)is easy to find
using refinement hole fits.

2.2.2 The Lens Library

In the lens library [10], the functions can be hard to find with Hoogle (see
section 2.5), due to the library’s extensive use of type synonyms. As an ex-
ample, consider the following:

import Control.Lens
import Control.Monad.State

newtype T =T { _v :: Int }

val :: Lens' T Int
val f (T i) =T <$>f i

updT :: T -> T
updT t = t & do
—val (1 :: Int)

For the hole in the above, the typed-hole message includes:

Found hole:
— :: ((Int -> fO Int) -> T -> f0 T) -> Int -> State T a0

where 0 and a0 are ambiguous type variables. Searching for this type sig-
nature in Hoogle (version 5.0.17) yields no results from the lens library.

When valid hole fits are available, GHC will output the following list of
valid hole fits:

Valid hole fits include

(#=) :: forall s (m :: * => %) a b. MonadState s m =>
ALens s sab ->b ->m ()

(<#=) :: forall s (m :: * -> %) a b. MonadState s m =>
Alens s sab ->b->mb

(<#=) :: forall s (m :: * -> %) a. (MonadState s m,
Num a) => LensLike' ((,) a) s a ->a ->m a

(<+=) :: forall s (m :: * -> x) a. (MonadState s m,
Num a) => LensLike' ((,) a) sa ->a ->m a

(<-=) :: forall s (m :: * -> %) a. (MonadState s m,
Num a) => LensLike' ((,) a) s a ->a ->m a

(<<x=) :: forall s (m :: *x -> %) a. (MonadState s m,

Num a) => LensLike' ((,) a) s a ->a ->m a
(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N
or -fno-max-refinement-hole-fits)

21



2. Suggesting Valid Hole Fits for Typed-Holes

Though the names of the functions are opaque, we see that integrating
the valid hole fits into the typed-holes and integrating with the type checker
itself is a clear win, allowing us to find a mulitude of relevant functions from
lens.

2.3 Implementation

The valid hole fit suggestions for typed-holes are implemented as an exten-
sion to the error reporting mechanism of GHC, and are only generated dur-
ing error reporting of holes. This means that we can emphasize utility rather
than performance, as any overhead will only be incurred when the program
would in any case fail due to an error.

2.3.1 Inputs & Outputs

The entry into the valid hole fit search is the function called findValidHoleFits
in the TcHoleErrors module !:

findValidHoleFits :: TidyEnv -- Type env for zonking

-> [Implication] -- Enclosing implics
-- containing givens
-> [Ct] -- Unsolved simple constraints
-- 1in the implic for the hole.

-> Ct -- The hole constraint itself

-> TcM (TidyEnv, SDoc)

This function takes the hole constraint that caused the error, the unsolved
simple constraints that were in the same set of wanted constraints as the
hole constraint, and the list of implications which that set was nested in.
The tidy type environment at that point of error reporting is also passed to
the function, and used later for zonking 2 To zonk, we use

zonkTidyTcType :: TidyEnv -> TcType -> TcM (TidyEnv, TcType)

from TcMType, which uses the tidy type environment to ensure that the re-
sulting types are consistent with the rest of the error message and other error
messages. The function returns the (possibly) updated tidy type environment
and the message containing the valid hole fits.

! Available in GHC HEAD at:
http://git.haskell.org/ghc.git/blob/refs/heads/master:/compiler/typecheck/TcHoleErrors.hs

%In the context of GHC, zonking is when a type is traversed and mutable type variables
are replaced with the real types they dereference to.
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2.3.2 Relevant Constraints

The unsolved simple constraints are constraints imposed by the call-site of
the hole. As an example, consider the holes _a and _b in the following:

f :: Show a => a -> String
f x = show (_b (show _a))

Here, the type of _a and the return type _b need to fulfill a show constraint.
These constraints constitute the set of unsolved simple constraints {Show
t,, Show t,}, where ¢, is the type of _a, and String -> t; is the type of
_b. Since valid hole fits are only considered for one hole at a time, the un-
solved simple constraints are filtered to only contain constraints relevant to
the current hole. For hole _a, this would be {Show {,}, and for hole _b this
would be {Show #;}. This is done by discarding those constraints whose
types do not share any free type variables with the type of the hole. I call
this filtered set of constraints the relevant constraints.

2.3.3 Candidates

Candidate hole fits are identifiers gathered from the environment. We con-
sider only the elements in the global reader and the local bindings at the
location of the hole (discarding any shadowed bindings). The global reader
contains identifiers that are imported or defined at the top-level of the mod-
ule. Using the local bindings allows us to include candidates bound by pat-
tern matching (such as function arguments) or in let or where clauses. As
an example, in:
f (x:xs) = let a = () in _

where k = head xs
the global reader elements considered as candidates are the functions in the
Prelude and f, while the local binding candidates are f, x, xs, a and k. When
shadowed bindings are removed, the f from the global reader is discarded.
For global elements, a lookup is performed in the type checker to find their
associated identifiers, discarding any elements not associated with an iden-
tifier or data constructor (like type constructors or type variables). Candi-
dates from GHC.Err (like undefined) are discarded, since they can be made
to match any type at all, and are unlikely to be the function that the user is
looking for.

2.3.4 Checking for Fit

Each of these candidates is checked in turn by invoking the tcCheckHoleFit
function. This function starts by capturing the set of constraints and wrapper
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2. Suggesting Valid Hole Fits for Typed-Holes

emitted by the tcSubType_NC function when invoked on the type of the
candidate and the type of the hole. The tcSubType_NC function takes in two
types and returns the core wrapper needed to go from one type to the other,
emitting the constraints which must be satisfied for the types to match. The
relevant constraints are added to this set of constraints, to ensure that any
constraints imposed by the call-site of the hole are satisfied as well. This
extended set is wrapped in the implications that the hole was nested in, so
that any givens contained in the implications (such as that a satisfies the
show constraint in the example above) are passed along. These are passed to
the simplifier, which checks the constraints. If the set is soluble, the candidate
is a valid hole fit, and the wrapper is returned. The wrapper is used later to
show how the type of the fit matches the type of the hole by showing the
type application, like product @[] @Int in figure 2.2.

2.3.5 Refinement hole fits

For refinement hole fits, N fresh flexible type variables are created, ay, ..., ay,
where N is the refinement level set by the - frefinement-level-hole-fits
flag. We then look for fits not for the type of the hole, f;, but for the type
a; — -+ — ay — ty. These additional type variables allow us to emulate
additional holes in the expression. To limit the number of refinement hole
fits, additional steps are taken after we have checked whether the type fits, to
check whether all the fresh type variables ended up being unified with a con-
crete type. This ensures that fits involving fresh variables such as id (- ::
al -> a2 -> a) (— :: al) (- :: a2) arediscarded unless explicitly re-
quested by the user by passing the -fabstract-refinement-hole-fits
flag. If a match is found, the fresh type variables are zonked and the type
they were unified with read off them, allowing us to show the types of the
additional holes (like Int -> Int -> Intforthe holeinthe foldll (_ ::
Int -> Int -> Int) fit).

2.3.6 Sorting the Output

As with relevant bindings, only 6 valid hole fits are displayed by default. To
increase the utility of the valid hole fits, we sort the fits by relevance, which
is approximated in two ways.

Sorting by Size: The default approximation sorts by the size of unique
types in the type application needed to go from the type of the fit to the type
of the hole, as defined by the core expression wrapper returned when the fit
was found. The size is computed by applying the sizeTypes function, which
counts the number of variables and constructors:
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Table 2.1: Sizes of matches for _ :: String -> [String]
Fit Type Application Size
lines String -> [String] 0
repeat a -> [a] String 2
mempty Monoid a => a String -> [String] 6

Only unique types are considered, since fits that require many differ-
ent types are in some sense “farther away” than fits that require only a few
unique types. This method is faster and returns a reasonable ordering in most
cases.

Sorting by Subsumption: The other approximation is enabled by the
-fsort-by-subsumption-hole-fits flag. When sorting by subsumption,
a subsumption graph is constructed by checking all the fits that have been
found for whether they can be used in place of any other found fit. A directed
graph is made, in which the nodes are fits and the edges are the result of the
subsumption check, where fit 4 has an edge to fit b fit if b could be used
anywhere that a could be used. An example of such a graph can be seen
in figure 2.3. The fits are sorted by a topological sort on this graph, so that
if b could be used anywhere a could be used, then b appears after a in the
output. This ordering ensures that more specific fits (such as those with the
same type as the hole) appear earlier than more abstract, general fits.

Figure 2.3: The subsumption graph for matches for _ :: string -> [String].
Here lines would come before repeat, read, and fail, repeat
before mempty and return, etc.

2.3.7 Dealing with Side-effects

When GHC simplifies constraints, it does so by side-effect on the type vari-
ables involved and the evidence contained within implications. To ensure
that checks for fits do not affect later checks, we must encapsulate these
side-effects.

Using Quantification: My first (naive) approach to avoid side-effects
was to wrap the type with any givens from the implications and quantify-
ing any free type variables, which meant that any effects on the variables
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only affected fresh variables introduced by the type checker during simpli-
fication. However, this approach rejected some valid hole fits and accepted
some invalid hole fits since the type forall a. a is not equivalent to a in
most cases.

Using a Wrapper: The current approach to avoid side-effects uses a
wrapper that restores flexible meta type variables back to being flexible after
the operation has been run, reverting any side-effects on those variables.

2.4 An Additional Application

The reason I started looking into valid hole fits for typed-holes was to be
able to interact with libraries of functions annotated with non-functional
properties.

A Library of Sorting Algorithms annotated with computational com-
plexity and memory complexity is one example. We can define a type to
represent simple asymptotic polynomials for a simplistic encoding of big O
notation:

{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies,
UndecidableInstances, ConstraintKinds #-}
module ONotation where

import GHC.TypelLits as L
import Data.Type.Bool
import Data.Type.Equality

-- Simplistic asymptotic polynomials
data AsymP = NLogN Nat Nat

-- Synonyms for common terms

type N = NLogN 1 0
type LogN = NLogN 0 1
type One = NLogN 0 0

-- Just to be able to write it nicely
type 0 (a :: AsymP) = a

type family (~.) (n :: AsymP) (m :: Nat) :: AsymP where
(NLogN a b) ~. n = NLogN (a L.* n) (b L.* n)

type family (x.) (n :: AsymP) (m :: AsymP) :: AsymP where
(NLogN a b) *. (NLogN c d) = NLogN (a+c) (b+d)

type family OCmp (n :: AsymP) (m :: AsymP) :: Ordering where
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OCmp (NLogN a b) (NLogN c d) =
If (CmpNat a ¢ == EQ) (CmpNat b d) (CmpNat a c)

type family OGEq (n :: AsymP) (m :: AsymP) :: Bool where
0GEq n m = Not (OCmp n m == 'LT)

type (>=.) n m = 0GEq n m ~ True

We can now annotate a library of sorting functions to use O notation to
convey complexity information:

{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies,
TypeApplications #-}
module Sorting ( mergeSort, quickSort, insertionSort
, Sorted, runSort, module ONotation) where

import ONotation
import Data.lList (insert, sort, partition, foldl')

-- Sorted encodes average computational and auxiliary
-- memory complexity. The complexities presented
-- here are the in-place complexities, and do not match
-- the naive but concise implementations included here.
newtype Sorted (cpu :: AsymP) (mem :: AsymP) a

= Sorted {runSort :: [al}

insertionSort :: (n >=. O(N*.2), m >=. 0(One), Ord a)
=> [a] -> Sorted nm a
insertionSort = Sorted . foldl' (flip insert) [1]

mergeSort :: (n >=. O(N+x.LogN), m >=. O(N), Ord a)
=> [a] -> Sorted nm a
mergeSort = Sorted . sort

quickSort :: (n >=. O(Nx.LogN) , m >=. O(LogN), Ord a)
=> [a] -> Sorted nm a
quickSort (x:xs) Sorted $ (recr 1t) ++ (x:(recr gt))
where (lt, gt) = partition (< x) xs
recr = runSort . quickSort @(O(N+.LogN)) @(0(LogN))
quickSort [] = Sorted []

Using valid hole fits, we can then search the sorting library by specifying
the desired complexity in the type of a hole to find functions with those
properties (or better):
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Valid hole fits include
mergeSort :: forall (n :: AsymP) (m :: AsymP) a.
(n>=. 0 (N *. LogN), m >=. O N, Ord a)
=> [a] -> Sorted n m a
quickSort :: forall (n :: AsymP) (m :: AsymP) a.
(n>=. 0 (N *. LogN), m >=. 0 LogN, Ord a)
=> [a] -> Sorted n m a

Figure 2.4: Valid hole fits found in GHCi version 8.6 for the hole in
— [3,1,2] :: Sorted (O(Nx.LogN)) (O(N)) Integer

2.5 Related Work & Ideas

Hoogle is the type directed search engine for Haskell, and allows users to
easily search all of Hackage for functions by type or name [12]. Hoogle,
however, does not integrate with the type checker of GHC, and can have dif-
ficulties with handling complex types and type families. Hoogle uses data ex-
tracted from the Haddock generated documentation of packages [12], mean-
ing that unexported functions in the current, local module and local bindings
like function arguments and bindings defined in let or where clauses are not
discoverable. For searching the Haskell ecosystem however, Hoogle remains
unparalleled.

Program Synthesis: Finding valid hole fits can be considered a special
case of type-directed program synthesis. Djinn is a program synthesis tool
that generates Haskell code from a type, and can generate total functions
rather than just single identifiers fom user provided types and functions [1].
Synquid is a command line tool and algorithm that can synthesize programs
from polymorphic refinement types in an ML-like language [14]. Other pro-
gram synthesis tools include InSynth and Prospector [6, 37], however none
of these are integrated with a compiler or type checker of a language, but are
rather stand-alone tools or IDE plugins.

PureScript: The valid hole fits as presented in this report are modeled on
the type directed search that Hegemann implemented in PureScript as part of
his Bachelor’s thesis work [8]. In PureScript, the type directed search looks
for matches when a typed-hole is encountered [8]. The valid hole fits as I
have implemented them in GHC go further than those in PureScript in that
the output is sorted, and additional arguments are available via refinement
hole fits.

Agda: The typed-holes of GHC were originally inspired by Agda [7].
Agda is dependently typed, and thus can offer very specific matches. The
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emacs mode of Agda offers the Auto command to automatically fill a hole
with a term of the correct type, and the Refine command can split a hole into
cases containing additional holes [1]. The dependent typing has the draw-
back that type inference is in general undecidable, and users must explicitly
provide more types than required in Haskell [13].

Idris, like Agda, is dependently typed, and offers a proofsearch command
that can construct terms of a given type [3]. Idris also has a type directed
search command, but in Idris the command also gives (and denotes) matches
with a more specific type, in addition to matches of the same or more gen-
eral type [3]. This allows users to find functions that match Eq a => [a]
-> a when searching for [a] -> a, even though it requires an additional
constraint [3]. Idris does not integrate these commands with typed-holes.

2.6 Conclusion

As can be seen from the examples in this report, valid hole fits can be useful in
many different scenarios. They can improve the user experience for Haskell
programmers working with prelude functions like foldl or advanced fea-
tures like lens or TypeInType. The implementation makes use of the al-
ready present type-checking mechanisms of GHC, and integrates well with
typed-holes in a non-intrusive manner. I believe it to be good addition to the
typed-holes of GHC; it should help facilitate Type-Driven Development in
Haskell.

I learned a great deal from this project. Extending GHC was certainly
non-trivial, however, the modularity of GHC allowed me to reuse a lot of
code and to focus on the what rather than the how. A few pitfalls were en-
countered (like type checking by side-effect), and while the documentation
of GHC internals is not so great (being mostly spread around in comments
and assuming a lot of knowledge from the reader), the community was very
helpful to a newcomer.

2.6.1 Future Work

When working with typed-holes, a few issues come to light: Too General
Fits: The types inferred by GHC are sometimes too polymorphic for the valid
hole fits to be useful. One such example is if we consider the function f x =
(—+x) /5. Here, GHC will happily infer the most general type, namely that
f :: Fractional a => a -> a. A sensible hole fit for the hole in f is pi
:: Floating a => a, but that would constrain f to the more specific type
of Floating a => a -> a. If f is not explicitly typed, then pi should be
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a valid hole fit. However, f having a more specific type might invalidate
other code that uses f, if those uses are explicitly typed with a Fractional
constraint and not a Floating constraint. We would like to suggest such
hole fits, for example by including a list of more specific hole fits, such as
offered by Idris [3].

Built-in Syntax: Functions that are built-in syntax are not considered
as candidate hole fits, since they are not in the global reader. However, func-
tions like (,), [=],and (:) :: a -> [a] -> [a] are very common, and
suggesting them would improve the user experience. Since these functions
are syntax, they are not “in scope” in the global reader and no list of these
functions is defined in GHC, making the addition of built-in syntax candi-
dates non-trivial. One solution would be to hard-code these as candidates.

Functions with Fewer Arguments: There is no way to find functions
that take in fewer arguments than required, and users must resort to bind-
ing the arguments (with e.g. (\x -> _)) in order to find these suggestions.
Considering lambda abstractions as candidates could improve this case.

Specifying Behavior: It can be hard to choose which fit to use when
multiple fits with the right type but different behaviors are suggested. Being
able to hint to GHC how the function should behave would allow us to dis-
card wrong hole fits. One approach would be integrating the valid hole fits
with something like the refinement types of Liquid Haskell:

{-@ isPositive :: x:Int -> {v:Bool | v <=> x > 0} @-}

in which users can specify invariants for behavior [15].

2.6.2 Current Status

My contributions to GHC have been accepted. A basic version of the valid
hole fits is in GHC version 8.4, an improved version with sorting, refine-
ment hole fits and local binding suggestions in GHC version 8.6, and on GHC
HEAD, a version is available with a flag to display documentation for hole
fits in the output (to explain opaque function names). All code is available in
the TcHoleErrors module in GHC.
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bstract. Automatic program repair (APR) regularly faces the chal-
A lenge of overfitting patches — patches that pass the test suite, but
do not actually address the problems when evaluated manually. Cur-
rently, overfit detection requires manual inspection or an oracle making
quality control of APR an expensive task. With this work, we want to
introduce properties in addition to unit tests for APR to address the
problem of overfitting. To that end, we design and implement ProPR, a
program repair tool for Haskell that leverages both property-based test-
ing (via QuickCheck) and the rich type system and synthesis offered by
the Haskell compiler. We compare the repair-ratio, time-to-first-patch
and overfitting-ratio when using unit tests, property-based tests, and
their combination. Our results show that properties lead to quicker re-
sults and have a lower overfit ratio than unit tests. The created overfit
patches provide valuable insight into the underlying problems of the
program to repair (e.g., in terms of fault localization or test quality). We
consider this step towards fitter, or at least insightful, patches a critical
contribution to bring APR into developer workflows.






3.1 Introduction

Have you ever failed to be perfect? Don’t worry, so have automatic pro-
gram repair (APR) approaches. APR faces many challenges, some inher-
ited from search-based software engineering (SBSE), like overfitting [52, 65],
predictive-evaluation in search [71], and duplicate handling [10]. Other chal-
lenges are unique to the domain itself, such as deriving ingredients for a fix
[41] and producing valid programs [28]. Consequently, APR has open re-
search in all of its core aspects: search-space, search-process, and fitness-
evaluation. The research community is shifting its focus towards other so-
lutions, either leaving behind boundaries of search space using generative
neural networks [36, 42, 63], or by empirical evidence that fixes are often re-
lated to dependencies, not the code itself [4, 15]. Fixes are usually validated
by running against the test suite of the program, assuming that a solution
that passes all tests is a valid patch. However, Le Goues et al. [54] showed
that Program Repair can overfit, i.e., that a fix passes the test suite despite
removing functionality or just bypassing single tests.

Usually, generated patches are evaluated against a unit test suite of the
buggy program [12]. The fitness is defined as the number of failing tests
in the suite [13], making a fitness of zero a potential fix. The problem, is
the quality of the tests — often not all important cases are covered, and the
search finds something that passes all tests but doesn’t provide all wished
for functionality [52]. This is considered an overfit repair attempt. A partic-
ularly good example for this is the Kali approach [54], that removes random
statements of a program. In a later study, Martinez et al. [38] showed that
out of 20 of the repair attempts that passed the tests, only one was a real fix.
One approach by Yz et al. [69] to address overfitting was to introduce tests
generated with EvoSuite [16] to have a stronger test suite, reporting only an
improvement in speed, not in found solutions. Unfortunately, EvoSuite in-
troduces a new problem: If the program was faulty (which programs that we
are trying to repair are), an automatically generated test suite may assert the
faulty behavior and make test-based repairs unable to ever produce a correct
program, despite passing the (generated) test suite. Thus, current automated
test-case generation is not the be-all and end-all for overfitting in APR.
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This work aims to improve APR by addressing the overfitting problem by
introducing properties [4] in addition to unit tests. A software property is an
attribute of a function (e.g., symmetry, idempotency, etc.) that is evaluated
against randomly created instances of input data. Well-written properties
often cover hundreds of (unit) tests, making them attractive candidates for
fitness evaluation.

We argue that properties can be an improvement to the overfitting chal-
lenge in APR. While property-based testing frameworks exist for a range
of languages, the practice is particularly natural for functional program-
ming, and widely used in the Haskell community. Therefore, we implement a
tool called PropR, which utilizes properties for Haskell-Program-Repair and
evaluate the repair rates and overfitting rates for various algorithms (ran-
dom search, exhaustive search, and genetic algorithms). Our fixes follow a
GenProg-like approach [12] of representing patches as a set of changes to
the program, with the major difference that our patch ingredients (muta-
tions) are sourced by the Haskell compiler using a mechanism called typed
holes [5]. A typed hole can be seen as a placeholder, for which the compiler
suggests elements that produce a compiling program. As these suggestions
cover all elements in scope (not only those used in the existing code), we
overcome to some degree the redundancy assumption [41], i.e., the concept
that patches are sourced from existing code or patterns, which is common to
GenProg-like approaches.

Our results show that properties help to reduce the overfit ratio from 85%
to 63% and lead to faster search results. Properties can still lead to overfitting,
and the union test suite of properties and unit tests inherits both strengths
and weaknesses. We therefore argue to use properties if possible, and suggest
to aim for the strongest test suite regardless of the test-type. The patches
from PrOPR can produce complex repair patterns that did not appear within
the code. Even patches that are overfit can give valuable insight in the test
suite or the original fault.

Our contributions can be summarized as follows:

1. Introducing the use of properties for fitness functions in automatic pro-
gram repair.

2. Showing how to generate patch candidates using compiler scope, par-
tially addressing the redundancy assumption.

3. Performing an empirical study to evaluate the improvement gained
by properties with a special focus on manual inspection of generated
patches to detect eventual overfitting.
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4. An open source implementation of our tool PROPR, enabling future re-
search on program repair in a strongly typed functional programming
context.

5. Providing the empirical study data for future research.

The remainder of the paper is organized as follows: Section 3.2 intro-
duces property-based testing and summarizes the related work in the fields
of genetic program repair as well as background on typed holes, which are a
key element of our patch generation method. In Section 3.3 we present the
primary aspects of the repair tool and their reasoning. Section 3.4 presents
the data used in the empirical study, and declares research questions and
methodology. The results of the research questions are covered in Section 3.5
and discussed in Section 3.6. After the threats to validity in Section 3.7 we
summarize the work in Section 3.8. The shared artifacts are described in
Section 3.9.

3.2 Background and Related Work

3.2.1 Property-Based Testing

Property-based testing is a form of automated testing derived from random
testing [22]. While random testing executes functions and APIs on random
input to detect error states and reach high code coverage, property-based
testing uses a developer defined attributes called properties of functions that
must hold for any input of that function [4]. Random tests are performed
for the given property. If an input is found for which the property returns
false or fails with an error, the property is reported as failing along with the
input as a counter example [4]. Some frameworks will additionally shrink
the counter example using a previously supplied shrinking function to offer
better insight into the root cause of the failure [4].

There are some variations on property-based testing, e.g. SmallCheck,
which performs an exhaustive test of the property [57]. QuickCheck approx-
imates this behavior with a configurable number of random inputs (by de-
fault 100 random samples). Figure 3.1 provides an example comparison of
properties and unit tests of a sine function. The properties require an argu-
ment Double -> Test and must hold for any given Double. On any single
QuickCheck run, 202 tests are performed, forming a much stronger test suite
for a comparable amount of code.

A remaining question is, whether one cannot just reproduce these 202
tests by unit tests. For a single seed, this is doable — but it is a special strength
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prop_1 :: Double -> Test unit_1 :: Test
prop_1 x = unit_1 =
sin X ~== sin (X + 2*7) sin 7@ ~== sin (3x*7m)
prop_2 :: Double -> Test unit_2 :: Test
prop_2 x = unit_2 = sin 0 ==
sin (-1%x) ~== -1x(sin Xx)
unit_3 :: Test
prop_3 :: Test unit_3 = sin (m/2) ==
prop_3 = sin (m/2) ==
unit_4 :: Test
prop_4 :: Test unit_4 =
prop_4 = sin 0 == sin (-1xm/2) == -1x(sin 7t/2)
(~==) :: Double -> Double -> Bool
n~==m=abs (n - m) <= 1.0e-6

Figure 3.1: Comparison of Properties and Unit Tests for sin

of properties that the new tests are ad-hoc generated. We hope for this to
address the problem of overfitting [52], as there are no fixed tests to fit on
as long as seeds are changing. Furthermore, we stress that maintaining 2
properties is easier than maintaining 200 (repetitive) unit tests.

3.2.2 Haskell, GHC & Typed Holes

Haskell Haskell is a statically typed, non-strict, purely functional pro-
gramming language. Haskell’s design ensures that the presence of side ef-
fects is always visible in the type of a function, and it is typical programming
practice to cleanly separate code requiring side effects from the main appli-
cation logic. This facilitates a modular approach to testing in which program
parts can be tested in isolation without needing to consider global state or
side effects. Haskell’s rich type system and type classes allow tools such as
QuickCheck [4] to efficiently test functions using properties, where the in-
puts are generated by QuickCheck based on a generator for data of a given

type.

Valid Hole-Fits Our tool is based on using the Glasgow Haskell Compiler
(GHC), which is widely used in both industry and academia. GHC has many
features beyond the Haskell standard, including a feature known as typed
holes [5]. A “hole”, denoted by an underscore character (_), allows a pro-
grammer to write an incomplete program, where the hole is a placeholder
for some missing code.
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Using a hole in an expression generates a type error containing contex-
tual information about the placeholder, including, most importantly, its in-
ferred type. In addition to contextual information, GHC suggests some valid
hole-fits [5]. Valid hole fits are a list of identifiers in scope which could be
used to fill the holes without any type errors. As a simple example, consider
the interaction with the GHC REPL shown in Figure 3.2.

GHCi> let degreesToRadians :: Double -> Double
degreesToRadians d = d * _ / 180

<interactive>:4:30: error:
e Found hole: _ :: Double
In the expression: d x _ / 180
Valid hole fits include
d :: Double (bound at <interactive>:4:22)
pi :: forall a. Floating a => a (imported from ‘Prelude’)

Figure 3.2: Example code with a hole and its valid hole-fits

Here the definition of degreesToRadians contains a hole. There are just
two valid hole-fits in scope: the parameter d and the predefined constant pi.
GHC can not only generate simple candidates such as variables and func-
tions, but also refinement hole-fits. A refinement hole-fit is a function iden-
tifier with placeholders for its parameters. In this way GHC can be used to
synthesize more complex type-correct candidate expressions through a se-
ries of refinement steps up to a given user-specified refinement depth. For
example, setting the refinement depth to 1 will additionally provide, among
others, the following hole-fits:

negate ( — :: Double)
fromInteger ( — :: Integer)

In this work we use hole fitting for program repair by removing a po-
tentially faulty sub-expression, leaving a hole in its place, and using valid
hole-fits to suggest possible patches.

Hole-Fit Plugins By default, GHC considers every identifier in scope as a
potential hole-fit candidate, and returns those that have a type corresponding
to the hole as hole-fits. However, users might want to add or remove can-
didates or run additional search using a different method or external tools.
For this purpose, GHC added hole-fit plugins [18], which allows users to cus-
tomize the behavior of the hole-fit search. When using GHC as a library, this
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also allows users to extract an internal representation of the hole-fits directly
from a plugin, without having to parse the error message.

3.2.3 GenProg, Patch Representation, & Genetic Program Re-
pair

Search-based program repair revolved mostly around the work of Le Goues et
al. [12] in GenProg, which provided genetic search for C-program repair. One
of the primary contributions was the representation of a patch as a change
(addition, removal, or replacement) of existing statements. Genetic search is
based around the mutation, creation and combination of chromosomes — the
basic building bricks of genetic search. A chromosome of APR is a list of such
changes rather than a full program (AST), making the approach lightweight.
Utilizing changes is based on the Redundancy Assumption [32], i.e., assum-
ing that the required statements for the fix already exists. The code might
just use the wrong variable or miss a null-check to function properly. This
assumption has been verified by Martinez et al. [41], showing that the redun-
dancy assumption widely holds for inspected repositories. We adopted the
patch-representation in our tool, but were able to weaken the redundancy
assumption (see Section 3.3).

Since GenProg, much has been done in genetic program repair [12] mostly
for Java. Particularly Astor [39] enabled lots of research [60, 64, 67, 68] due
to its modular approach, as well as real-world applications [58, 61]. This
modularity, mostly the separation of fault localization, patch-generation and
search is a valuable lesson learned by the community that we adopted in
our tool. Compared to this body of research, our scientific contributions lie
within the patch-generation and the search-space (see Section 3.3.1).

3.2.4 Repair in Formal Verified Programs & Program Synthesis

Another field of research dominant in functional program is formal verifi-
cation [7], in which mathematical attributes are defined to proof the cor-
rectness of programs. Due to its strengths it has been widely applied to
various tasks, such as hardware-verification [26], cryptographic protocols
[43] or lately smart contracts [6]. But formal verification has also been ap-
plied to the domain of program repair and synthesis [30, 59], arguably some
languages can be considered synthesizers around constraints (e.g. Prolog).
For Haskell, these approaches are revolving around Liquid Types [48, 56], a
framework that allows for convenient meta-programming. The existing ap-
proaches [16, 21, 25] focus primarily on the search-aspects of program syn-
thesis due to the (infinite) search space and often perform a guided search
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similar to proof-systems.

The approach used in the Lifty language is particularly relevant. Lifty
is a domain-specific data-centric language where it can be statically and au-
tomatically verified that applications handle data according to declarative
security policies, and suggests a provably correct repairs if there is a leak
of sensitive data [17]. Their approach differs in that they target a domain-
specific language and focus on type-driven repair of security policies and not
general properties.

Another interesting approach is the TYGAR based Hoogle+ API discov-
ery tool, where users can specify programming tasks using either a type, a
set of input-output tests, or both, and get a list of programs composed from
functions in popular Haskell libraries and examples of behavior [11]. It is
however focused on API discovery and not program repair, although incor-
porating Hoogle+ into PropR is an interesting avenue for future work.

The approach by Lee et al. [35] is in many ways similar; They also op-
erate on student data and find very valuable insights from repair and iden-
tical challenges. The approach they developed (FixML) exploits typed holes
to align buggy student programs with a given instructor-program based on
symbolic execution. FixML is different as it requires a gold standard, and
it synthesizes by type-enumeration after symbolic execution. To some de-
gree, this is similar to our approach of an exhaustive search. There are some
scalability concerns for symbolic execution [44] (which are subject to active
research), which genetic algorithms successfully mitigate, motivating their
usage in PrRopR.

Program repair benefits when compared to synthesis if we consider the
developers to deliver a reasonable baseline program. Assuming this, we can
exchange most of the search-related problems in favor of two separate chal-
lenges: fault localization and repair. Unlike most existing research in pro-
gram repair, we do not utilize donor-approaches that transplant elements into
faulty parts, but we perform located synthesis instead. Hence, to some de-
gree, we consider this work a bridge between synthesis and program repair.

In terms of utilizing specifications, the primary benefit of QuickCheck
is the (comparably) easy adoption for users. Formal verification comes with
high entry-barriers for most programs and requires very dedicated and ed-
ucated developers. To some degree we utilize formal verification due to the
type-correctness-constraint that already greatly shrinks the search space —
while we assert the functional correctness with tests and properties. While a
full formal verification-suite could produce better results, we try to ease the
adoption of our approach by utilizing properties and tests instead.
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3.3 Technical Details — ProPR
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Figure 3.3: The ProrR test-localize-synthesize-rebind loop

To investigate the effectiveness of combining property-based tests with
type-based synthesis, we implemented ProPR. ProPR is an automated pro-
gram repair tool written in Haskell, and uses GHC as a library in conjunc-
tion with custom-written hole-fit plugins as the basis for parsing source
code, synthesizing fixes, as for instrumenting and running tests. PRorR also
parametrizes the tests so that local definitions can be exchanged with new
ones, which allows us to observe the effectiveness of a fix. To automate
the repair process, PROPR implements the search methods described in Sec-
tion 3.3.4 to find and combine fixes for the whole program repair. An overview
of the ProprR test-localize-synthesize-rebind (TLSR) loop is provided in Fig-
ure 3.3. The circled numbers (n) in this section refer to the labels in Figure 3.3.

As a running example, imagine we had an incorrect implementation of a
function to compute the length of a list called len, with properties, as seen
in Figure 3.4.
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len :: [a] -> Int
len [] 0
len xs = product $ map (const (1 :: Int)) xs

prop_abc :: Bool
prop_abc = len "abc" == 3

prop_dup :: [a] -> Bool
prop_dup x = len (x ++ x) == 2 % len X

Figure 3.4: An incorrect implementation of length. We map over the list and
set all elements to 1 :: Int, and take the product of the re-
sulting list. This means that len will always return 1 for all lists.
An expected fix would be to take the sum of the elements, which
would give the length of the list.

prop'_abc :: ([a] -> Int) -> Bool
prop'_abc f = f "abc" == 3

prop'_dup :: ([a] -> Int) -> [a] -> Bool
prop'_dup f x = f (x ++ x) == 2 x f x

Figure 3.5: The parametrized properties for len

3.3.1 Compiler-Driven Mutation

To repair a program, we use GHC to parse and type-check the source into
GHC’s internal representation of the type-annotated Haskell AST. By using
GHC as a library, we can interact with GHC’s rich internal representation of
programs without resorting to external dependencies or modeling. We deter-
mine the tests to fix by traversing the AST for top-level bindings with either
atype (TestTree) or name (prop) that indicates it is a test (1). We use GHC’s
ability to derive data definitions for algebraic data types [18] and the Lens
library [27] to generate efficient traversals of the Haskell AST. To determine
the function bindings to mutate, we traverse the ASTs of the properties and
find variables that refer to top-level bindings in the current module (2). We
call these bindings the targets.

In our example, both prop_abc and prop_dup use the local top-level
binding len in their body, so our target set will be {len}.
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abc_prop :: Bool
abc_prop = prop'_abc length

dup_prop :: [a] -> Bool
dup_prop = prop'_dup length

Figure 3.6: The parametrized properties applied to a different implementa-
tion of len, the standard library length

Parametrized properties To generalize over the definition of targets in
the properties and tests, we create a parametrized property from each of the
properties by changing their binding to take an additional argument for each
of the fargets in their body. This allows us to rebind (i.e., change the definition
of) each of the targets by providing them as an argument to the parametrized
property (3). Once the parametrized property has received all the target ar-
guments, it now behaves like the original property, with the target bindings
referring to our mutated definitions. We show the parametrized properties
for the properties in Figure 3.4 in Figure 3.5.

The new properties in Figure 3.6, abc_prop and double_prop will now
behave the same as the original prop_abc and prop_dup, but with every
instance of len replaced with length:

abc_prop = length "abc" == 3
double_prop x = length (x ++ x) == 2 % length x

This allows to create new definitions of len and evaluate how the properties
behave with the different definitions.

Fault localization ProrR uses an expression-level fault localization spec-
trum [1], to which we apply a binary fault localization method (touched or
not touched by failing properties). A notable difference to other APR tools
like Astor is that we can perform fault localization for the mutated targets.
This enables PrRoPR to adjust the search space once a partial repair has been
found, i.e. one that passes a new subset of the properties. Since fault lo-
calization is expensive, by default we only perform it on the initial program
similarly to Astor [13, 39]. GHC’s Haskell Program Coverage (HPC) can in-
strument Haskell modules and get a count of how many times each expres-
sion is evaluated during execution [19]. Using QuickCheck, we find which
properties are failing and generate a counterexample for each failing prop-
erty (4). For properties without arguments (essentially unit tests), we do not
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need any additional arguments, so we can run the property as-is: the coun-
terexample is the property itself. By applying each property to its coun-
terexample and instrumenting the resulting program with HPC, we can see
exactly which expressions in the module are evaluated in a failing execu-
tion of property (5). The expressions evaluated in the counterexample of
the property are precisely the expressions for which a replacement would
have an effect: non-evaluated expressions cannot contribute to the failing of
a property. We call these the fault-involved expressions. These will be all the
expressions involved in failing tests/properties, and covers every expression
invoked when running counter-examples.

In our simple example, only prop_dup requires a counterexample, for
which QuickCheck produces a simple, non-empty list, [ () ]. When we then
evaluate prop_abc and prop_dup [()], only the expressions in the non-
empty branch of len are evaluated: the empty branch is not involved in the
fault.

Perforation For the targets, we generate a version of the AST with a new
typed hole in it, in a process we call perforation. When we perforate a target,
we generate a copy of its AST for each fault-involved expression in the target,
where the expression has been replaced with a typed hole (6). The perforated
ASTs are then compiled with GHC. Since they now have a typed hole, the
compilation will invoke GHC’s valid hole-fit synthesis [5] (7). We present a
few examples of the perforated versions of len in Figure 3.7.

len [1 =0
len xs = _
len [] =0
len xs = _ $ map (const (1 :: Int)) xs
len [1 =0

len xs = product $ —
len [] =0

len xs = product $ — (const (1 :: Int)) xs

Figure 3.7: A few perforated versions of len. N.B. the empty branch is not
perforated, as it is not involved in the fault
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3.3.2 Fixes

A fix is represented as a map (lookup table) from source locations in the mod-
ule to an expression representing a fix candidate. Merging two fixes is done
by simply merging the two maps. Candidate fixes in PROPR come in three
variations, hole-fit candidates, expression candidates, and application candi-
dates.

Hole-fit Candidates Using a custom hole-fit plugin, we extract the list of
valid hole-fits for that hole, and now have a well-typed replacement for each
expression in the target AST.

Found hole: _ :: [Int] -> Int
In an equation for 'len':
len xs = _ $ map (const (1 :: Int)) xs
Valid hole fits include
head :: [a] -> a
last :: [a] -> a
length :: Foldable t => t a -> Int
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
sum :: (Foldable t, Num a) => t a -> a
Valid refinement hole fits include
foldll (= :: Int -> Int -> Int)

Figure 3.8: Hole-fits for a perforation of len, where product has been re-
placed with a hole

{<interactive:3:10-15>: head}
{<interactive:3:10-15>: last}
{<interactive:3:10-15>: length}

{<interactive:3:10-15>: sum}

Figure 3.9: Candidate fixes derived from the valid hole-fits in Figure 3.8. The
location refers to product in len

We derive hole-fit candidates directly from GHC’s valid hole-fits, as seen
in Figure 3.8, giving rise to the fixes in Figure 3.9. These take the form of an
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identifier (e.g., sum), or an identifier with additional holes (e.g., foldll _)
for refinement fits.

Since we synthesize only well-typed programs, we cannot use refinement
hole-fits directly: the resulting program would result in a typed hole error.
To use refinement hole-fits, we recursively synthesize fits for the holes in the
refinement hole-fits up to a depth configurable by the user. This means that
we can generate e.g., foldll (+) when the depthissetto1,ande.g., foldll
(flip =) —» foldll (flip (-)) for adepth of 2, etc. By tuning the refine-
ment level and depth, we could synthesize most Haskell programs (excepting
constants). However, in practical terms, the amount of work grows exponen-
tially with increasing depth.

To be able to find fixes that include constants (e.g., Strings or Ints)
or fixes that would otherwise require a high and deep refinement level, we
search the program under repair for expression candidates [37]. These are in-
jected into our custom hole-fit plugin and checked whether they fit a given
hole using machinery similar to GHC’s valid hole-fit synthesis, but matching
the type of an expression instead of an identifier in scope. In our example,
these would include 0, (1 :: Int), (x ++ x), and more. For each expres-
sion candidate, we then check that all the variables referred to in the expres-
sions are in scope, and that the expression has an appropriate type. We also
look at application candidates of the form (— x), where x is some expression
already in the program, and _ is filled in by GHC’s valid hole-fit synthesis.
This allows us to find common data transformation fixes, such as filter
(not . null).

Regardless of technical limitations, this approach can be considered a
form of localized program synthesis exploited for program repair. By using
valid hole-fits, we can utilize the full power GHC’s type-checker when find-
ing candidates and avoid having to model GHC’s ever-growing list of lan-
guage extensions. This allows us to drastically reduce the search space to
well-typed programs only.

3.3.3 Checking Fixes

Once we have found a candidate fix, we need to check whether they work.
We apply a fix to the program by traversing the AST, and substituting the
expression found in the map with its replacement. We do this for all targets,
and obtain new targets where the locations of the holes have been replaced
with fix candidates. For the given len example, the fixes in Figure 3.9 give
rise to the definitions shown in Figure 3.10. We then construct a checking
program that applies the parametrized properties and tests to these new tar-
get definitions and compile the result. A simplified example of this can be
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lenl [] =0

lenl xs = head $ map (const (1 Int)) xs
len3 []1 =0

len3 xs = length $ map (const (1 Int)) xs
len7 [1 =0

len7 xs = sum $ map (const (1 Int)) xs

Figure 3.10: New targets defined by applying the fixes in Figure 3.9 to the
original len

PropR> mapM sequence

[[quickCheck (prop'_abc lenl), quickCheck (prop'_dup lenl)]
, [quickCheck (prop'_abc len2), quickCheck (prop'_dup len2)]
, [quickCheck (prop'_abc len3), quickCheck (prop'_dup len3)]
, [quickCheck (prop'_abc len4), quickCheck (prop'_dup len4)]
, [quickCheck (prop'_abc len5), quickCheck (prop'_dup len5)]
, [quickCheck (prop'_abc len6), quickCheck (prop'_dup len6)]
, [quickCheck (prop'_abc len7), quickCheck (prop'_dup len7)]]

-- Evaluates to:
[[False, False], [False, False],[True, True], [False, False]
, [False, False],[False, False],[True, Truel]

Figure 3.11: Checking our new targets from Figure 3.10

seen in Figure 3.11, though we do additional work to extract the results in
ProrR. It might be the case that the resulting program does not compile: as
our synthesis is based on the types, we might generate programs that do not
parse because of a difference in precedence (precedence is checked during
renaming, after type-checking in GHC). We remove all those candidate fixes
that do not compile, obtaining an executable that takes as an argument the
property to run, and returns whether that property failed. We run this exe-
cutable in a separate process: running it in the same process might cause our
own program to hang due to a loop in the check. By running in a separate
process, we can kill it after a timeout and decide that the given fix resulted
in an infinite loop. After executing the program, we have three possible re-
sults: all properties succeeded; the program did not finish due to an error or
timeout; or some properties failed (8). In our example, we see in Figure 3.11
that len3 and len7 pass all the properties, meaning that replacing product
with length or sum qualifies as a repair for the program.
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3.3.4 Search

Within PropR, we implemented three different search algorithms: random
search, exhaustive search, and genetic search @

All three algorithms share a common configuration: they all have a time
budget (measured in wall clock time) after which they exit, and return the
results (if any) that they’ve found.

For the genetic search, PRoPR implements best practices and algorithms
common to other tools such as Astor [39] or EvoSuite [16]. A mutation con-
sists of either dropping a replacement of a fix, or adding a new replacement
to it. The initial population is created as picking n random mutations. The
crossover randomly picks cut points within the parent chromosomes, and
produces offspring by swapping the parents’ genes around the cut points.
We support environment-selection [23] with an elitism-rate [3] for trunca-
tion. Elitism means that we pick the top x% percent of the fittest candidates
for the next generation, filling the remaining (100 — x)% with (other) ran-
dom individuals from the population. We choose random pairs from the
last population as parents and perform environment selection on the par-
ents and their offspring. Our manual sampling of repairs-in-progress on the
data points showed that genetic search requires high churn in order to be
effective: changing a single expression of the program usually failed more
properties than it fixed. Hence, the resulting configurations for the experi-
ment have a low elitism- and high mutation- and crossover-rate.

Within random search, we pick (up to a configurable size) evaluated
holes at random and pick valid hole-fits at random with which to fill them.
We then check the resulting fix and cache it. The primary reason for using
random search is to show that the genetic search is an improvement over
guessing. Nevertheless, Qi et al. [53] showed that random search sometimes
can be superior to genetic search, further motivating its application. Besides,
random search is a standard baseline in search-based software engineering
to assess whether more “intelligent” search algorithms are indeed needed for
the problem under analysis.

For exhaustive search, we check each hole-fit in a breadth-first man-
ner: first all single replacement fixes, then all two replacement fixes and so
on until the search budget is exhausted. Exhaustive search is completely de-
terministic except for the randomness inherent in QuickCheck. The primary
reason for exhaustive search is to show the complexity of the problem, i.e.,
search is necessary over sheer brute force.

The deterministic search pattern of exhaustive search would be ideal for
a single fix problem such as our example.

The fitness for all searches is calculated as the failure ratio 2umber of failures

number of tests
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with a non-termination or errors treated as the worst fitness 1 and a fitness
of 0 (all tests passing) marks a candidate patch. Such patches are removed
from populations in genetic search and replaced by a new random element.

Within the test-localize-synthesize-rebind loop (Figure 3.3) we perform
one generation of genetic search per loop, that is after the selection in chro-
mosomes the program is re-bound and coverage evaluated. The authors ob-
served that this is a bit over-engineered for small programs — within small
problems the fault localization did not greatly change especially for programs
with only a single failing property. Hence, we added a flag to skip the steps
5 to 7 in the loop, in order to speed up the actual search. This configuration
was also enabled during experiments presented in 3.4.

The exhaustive and random search do not use any rebinds - once the loop
reaches their step they exhaust the search budget.

3.3.5 Looping and Finalizing Results

Looping If there are still failing properties after an iteration of the loop,
we apply the current fixes we have found so far to the targets and enter the
next iteration of the loop , repeating the process with the new targets
until all properties have been fixed, or the search budget runs out.

Finalizing and Reporting Results After we have found a set of valid
fixes that pass all the properties, we generate a diff for the original program
based on the program bindings and the mutated targets constituting the fix
@. This way the resulting patches can be fed into other systems such as
editors or pull requests.

3.4 Empirical Study

3.4.1 Research Questions

Given the concepts presented in Section 3.3, research interests are twofold:
How well does the typed hole synthesis perform for APR, and what is the
individual contribution of properties. As within the integral approach of
PRroOPR, the effects cannot truly be dissected; The only contributions that we
can separate for distinct inspection is the use of properties, under which we
will investigate the patches generated by PropR.

We first want to answer whether properties add value for guiding the
search. Ideally, properties should improve the repair-rate, speed and quality
regardless of the approach, which we address in RQ1:
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diff --git a/<interactive> b/<interactive>
--- a/<interactive>
+++ b/<interactive>
@@ -1,2 +1,2 @@ len [] =0

len [] =0

-len xs product $ map (const (1 :: Int)) xs
+len xs length $ map (const (1 :: Int)) xs

diff --git a/<interactive> b/<interactive>
--- a/<interactive>

+++ b/<interactive>

@ -4,2 +4,2 @@ len [] =0

len [] =0
-len xs = product $ map (const (1 :: Int)) xs
+len xs = sum $ map (const (1 :: Int)) xs

Figure 3.12: The final result of our repair for len

Research Question 1

To what extent does automatic program repair benefit from the use of
properties?

Given that properties do have an impact (for better or worse), we want to
quantify its extent on configuration and selection of search algorithms. For
example, we expect that the use of properties helps with fitness and search,
but will increase the time required for evaluation — this would motivate to
configure the genetic search to have small but well guided populations. To
elaborate this we define RQ2 as follows:

Research Question 2

How can we improve (and configure) search algorithms when used with
properties?

With the last research question we want to perform a qualitative analysis
on the results found. Previous research showed that just maximizing metrics
is not sufficient. With a manual analysis we look for the issue of overfitting
and try to investigate new issues and new patterns of overfitting.
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Research Question 3

To what extent is overfitting in automatic program repair addressed by
the use of properties?

3.4.2 Dataset

The novel dataset stems from a student course on functional programming,.
Within the exercise, the students had to implement a calculator that parses
a term from text, calculates results and derivations. While the overall notion
is that of a classroom exercise, the problem nevertheless contains real-world
tasks asserted by real-world tests. The calculator itself is a classic student-
exercise, but the subtask of parsing is both common and difficult, represent-
ing a valuable case for APR. In total, we collected 30 programs that all fail
at least one of 23 properties and one of 20 unit tests. The programs range
from 150 to 700 lines of code (excluding tests) and have at least 5 top level
definitions. These are common file-sizes for Haskell, e.g. PropR itself has
an average of 200 LoC per file. The faults are localized to one of the three
modules provided to ProrpR.

The most violated tests are either related to parsing and printing (espe-
cially of trigonometric functions, also seen in Figure 3.18) or about simplifi-
cation (seen in Figure 3.13), which are core-parts of the assignment. The cal-
culator makes a particularly good example for properties, as attributes such
as commutativity, associativity etc. are easy to assert but harder to imple-
ment. Hence, we argue that the calculator-exercise makes a case for typical
programs that implement properties (i.e., they are not artificially added for
APR).

Data points were selected from the students submissions if they fulfilled
the following attributes: (1) it compiled (2) it failed the unit test suite and the
property-based test suite separately. An error-producing test is considered as
a normal failure. We selected them by these criteria to draw per-data-point
comparisons of properties to unit tests and their unison. We consider a sep-
arate investigation of repairing unit test failing programs versus properties
failing programs and their overfitting future research.

prop_simplify_idempotency :: Expr -> Bool
prop_simplify_idempotency e =

simplify (simplify e) == simplify e

Figure 3.13: A property asserting the idempotency of simplify
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Table 3.1: Parameters for Grid Experiment

parameter inspected values

tests Unit Tests ; Properties ; Unit Tests + Properties
search random ; exhaustive ; genetic
termination 10 minute search-budget

seeds 5 seeds

The anonymized data is provided in the reproduction package.

3.4.3 Methodology / Experiment Design

To evaluate RQ1 and RQ2 we perform a grid experiment on the dataset with
the parameters presented in Table 1. For every of the 45 configurations we
make a repair attempt on every point in the dataset. The genetic search uses
a single set of parameters that was determined through probing. We utilize
docker and limit every docker container to 8 vCPUs @ 3.6ghz and 16gb RAM
(The container’s lifetime is exactly one data-point). Further information on
the data collection can be found in the reproduction package.

Given this grid experiment, we collect the following values for each data
point in the dataset:

1. Time to first result
2. Number of distinct results within 10 minutes

3. The fixes themselves

The search budget starts after a brief initialization, as PRopPR loads and
instruments the program. We round the measured times to two digits as
recommended by Neumann et al. and remove Type-1-Clones (identical up to
whitespace) from the results [29, 45].

To answer RQ1 we check every trial whether at least one patch was found
(whether it was solved). We then perform a Fisher exact test [55] to see if the
entries originate from the same population, i.e., if they follow the same distri-
bution. We consider results with a p-value of smaller than 0.05 as significant.

To answer RQ2 we perform a pairwise Wilcoxon-RankSum test [49] on
the data points grouped by their test configuration. The Wilcoxon test is a
non-parametric test and does not make any assumption on data distribution.
In its pairwise application, we first compare the effect of unit tests against the
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effect of properties, then unit tests against combined unit tests and properties
etc. We choose a significance level of 95%.

After we have seen whether properties have a significant impact on pro-
gram repair, we can quantify the effect size by applying the Vargha-Delaney
test [62] to the given pairs of configurations. In the Vargha-Delaney test, a
value of e.g. 0.7 means that algorithm B is better than algorithm A in 70%
of the cases, estimating a similar probability of dominance for future appli-
cations on similarly distributed data points. Note that a result of 0.5 does
not mean there was no effect — the groups can still be significantly different
without being clearly better.

RQ3 can (to the best of our knowledge) only be answered by human eval-
uation. Existing research on automatic patch-validation by Qi [66] requires
an automatic test-generation framework (which is not available for Haskell)
as well as a gold-standard fix to work as an oracle. They used existing git-
fixes as oracles, but we expect some data points to be correct despite not
matching the sample-solution. Similarly, work by Nilizadeh et al. [46] uti-
lizes formal verification to automatically verify generated patches, unfortu-
nately we had no specifications available to us for the dataset. Hence, we
perform the analysis manually, similar to [54] and [38]. As there are too
many results to manually inspect, we sampled 70 fixes' and let two authors
label them as overfit or not overfit. The authors do so based on their domain-
knowledge and in accordance with a given gold-standard. On disagreement,
the authors provide a short written statement before discussing and agreeing
on the fix-status. The conclusion of the discussion is also documented with
a short statement. The manual labels as well as the statements are shared
within the replication package.

3.5 Results

The following section answers the research questions in order and presents
general information gained in the study.

RQ 1—Repair Rate In total, PROPR managed to find patches for 13 of 30
programs of the dataset. In Table 3.2 we show the detailed results of these
13 programs. We found 228 patches in total, with a median of 3 patches
per successful run. A visualization of the results can be seen in Figure 3.14
and Figure 3.15.

IThe threshold of 70 has been calculated after seeing 230 patches being generated, which
is sufficient sample for a p-value of 0.05 at an error rate of 10%
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Table 3.2: Number of independent runs that produced at least one patch for
genetic search

Programs E01 [E02 E03 E04 E05 E07 E08 E09 E12 E13 E14 E18 E25

Units 0 1 5 5 5 5 5 5 5 0 0 0 5
Props 5 1 1 0 5 5 5 5 2 1 5 2 3
Both 0 1 4 0 1 5 5 5 3 0 0 0 3

Solved Entries per Test-Suite

12 9 search-Algorithm
B exhaustive
104 ™= genetic
B random

Entries with atleast one Patch

both props units
Test-Suite

Figure 3.14: Solved Entries per Test-Suite and Algorithm

For every entry, we performed a Fisher exact test based on the repair per
seed of every test suite. The contingency tables are based on whether the
specific seed found patches for the test suite. It showed that 4 of the 13 re-
paired entries were significantly better in producing repairs with properties
(E1, E3, E4, and E14 from Table 3.2).

A global Fisher exact test and Wilcoxon-RankSum test showed no sta-
tistical significant difference between the test suites (p-values of 10%-20%).
Whether properties are beneficial is a highly specific topic, and we expect it
more to be a matter whether the bug is properly covered by the test suite.
We argue that properties can produce stronger test suites than unit tests, but
whether they are applicable and well implemented is ultimately up to the
developers.

Figure 3.14 shows genetic search outperforming exhaustive search in any
test suite configuration, and most effectively for properties.

Figure 3.15 shows the overlap of solved entries by test suite. It shows
that four entries were uniquely solvable by using only properties and one
entry was uniquely solvable by the combined test suite. All entries solved by
unit tests have also been solved by the properties. This does not necessarily
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Solved Entries

Props
Both

Units

Figure 3.15: Venn-Diagram of Solved Entries per Suite

imply that properties are better — the patches can still be overfit and are to
be evaluated in RQ3.

Summary RQ1

Properties do not significantly help with producing patches. In our study,
properties found unique patches that unit tests did not produce. The dif-
ference between results in genetic and exhaustive search were greatest
for the properties.

RQ 2 — Repair Speed We grouped the results per seed and compared the
median time-to-first-result for each test suite. All two-way hypothesis-tests
reported a significant p-value of less than 0.01, proving that there are signif-
icant differences in distributions.

In particular, we performed a test? whether properties are faster than
unit tests in finding patches, which was the case with a p-value of 0.02. The
Vargha and Delaney effect size test showed an estimate of 0.28 which is con-
sidered a medium-effect size, showing that properties are faster than unit
tests. This behavior holds true for genetic and exhaustive search.

An overview of the time-to-first-result can be seen in Figure 3.16. We
would like to stress that similar to some results of RQ3, the test suites’” speed
seems to behave in such a way that the slowest and hardest test determines
the magnitude of search. Properties do not have a significant overhead by
design, which is positively surprising. The cost of their execution is com-
pensated by the speedup in search.

2Wilcoxon-RankSum with less
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Time to first Result per Test-Suite
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Figure 3.16: Distribution of Time to First Patch per Entry

Summary RQ2

Genetic Search finds patches faster for properties than for unit tests. The
combined test suite also yields combined search speed.

RQ 3 — Manual Inspection From the sample of 70 patches the authors
agreed on 49 to be overfit and 21 to be fit. Given the overall population of
230 and an error rate of 10%, we expect 62 to 76 of total patches to be correct.
This results in a total non-overfit rate of 27% to 33%. In particular, patches
in the sample found for unit tests were overfit in 85% of cases (19/23), but
the properties were overfit in 64% of cases (21/33). The combined test suite
overfit in 63% (9/14) cases.

These are not evenly distributed — some programs are only repaired
overfit while others are always well fixed. Hence, we deduct that of the 13
Entries that have fixes, 3 to 4 have non-overfit repairs. This estimates an ef-
fective repair-rate of 10% or respectively 13%, which performs similar to the
rates reported by Astor [38] (13%) and better than GenProg [38](1-4%). Arja
[70] reports an effective repair rate of 8% which we slightly outperform.

A typical example found by manual inspection was adding space-stripping
to the addition-case of showExpr, as seen in Figure 3.17. There is a sin-
gle unit test (see Figure 3.18) to assert a printed addition without spaces.
Within the patch only the "+" case gets repaired — this is due to the prece-
dence of the expression which is correctly picked up. Hitherto, the change
in the addition actually removes all white-space and correctly passes the
test. This (actually) solves the unit test as expected and is therefore arguably
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diff --git a//input/expr_units.hs b//input/expr_units.hs
- a//input/expr_units.hs
+++ b//input/expr_units.hs
@@ -59,6 +59,6 @@ showExpr (Num n) = show n
showExpr (Num n) = show n
-showExpr (Add a b) = showExpr a ++ " + " ++ showExpr b
+showExpr (Add a b) =
+ showExpr a ++ ((filter (not . isSpace)) (" + ")) ++ showExpr b
showExpr (Mul a b) = showFactor a ++ " ++ showFactor b
showExpr (Sin a) = "sin" ++ showFactor a
showExpr (Cos a) "cos" ++ showFactor a
showExpr (Var c) [c]

*

Figure 3.17: A PropR patch showing overfitting on a unit test
prop_unit_showBigExpr :: Bool

prop_unit_showBigExpr = strip (showExpr expr) == strip res
where
res = "sin (2.1 * x + 3.2) + 3.5 x x + 5.7"

strip = filter (not . isSpace)
arg = Expr.sin (add (mul (num 2.1) x) (num 3.2))
expr = add (add (add (mul (num 3.5) x)) (num 5.7)) arg

Figure 3.18: The unit test corresponding to the fix in Figure 3.17

not truly overfitting. Nevertheless, a developer would perform the string-
stripping on all cases, not only on the addition. Here we see a shortcoming
of the test suite — this would have not been possible if we had a property
prop_showExpr_printNoSpaces or if we simply had unit tests for all cases.
In other data points, where the showExpr had a unified top-level expres-
sion (not an immediate pattern match), the repair was successful by adding
top-level string-stripping. We would also like to stress the quality of the
patch generated despite overfitting: It draws 4 elements (filter, toLower,
isSpace, (.)) which were not in the code beforehand and applied them at
the correct position.

Another issue observed were empty patches — these appeared when the
QuickCheck properties exhibited inconsistent behavior. We suspect a prop-
erty that tests for the idempotency of simplify seen in Figure 3.13, which
requires a randomly generated expression. The property is meant to assert
thate.g., x * 4 * 0 gets reduced to 0 and not to x * 0. Whether this case
(or similar ones) are tested depends on the randomly created expressions —
which makes it an inconsistent test. These are issues with the test suite that
were uncovered due to the hyper-frequent evaluation. The only way to mit-
igate this is to provide a handful of unit tests or write a specific expression-
generator used for the flaky property. We labeled empty patches to be overfit
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as we do not consider them proper repairs.

Summary RQ3

Adding properties reduced the overfit ratio from 85% to 63%, doubling
the number of good patches. The resulting effective repair rate of 10% to
13% is comparable to other tools. Overfitting appeared despite the use
of properties, but generally less due to an overall stronger test suite.

3.6 Discussion

Overfitting on Properties Similar to the overfitting of empty patches
shown in RQ3, we had cases of patches where one or more failing prop-
erties exhibited inconsistent behavior, and an overfit patch was considered a
successful patch. We observed an example that changed the simplification of
multiplication to return 0 whenever a variable was in the term. This satisfies
the prop_MultWith0_Always@ property and in principle fails other prop-
erties such as multiplicative associativity, but (in rare cases) Quick-Check
produced trivial examples for the other properties that also evaluate to 0.

This overfitting shows that a test suite is not better just because it is utiliz-
ing properties. APR-fitness is still only as good as the test suite — properties
help define better test suites and well-written properties positively influence
APR.

Exploitable Overfitting A noticeable side effect of the tool is that if the
repair overfits, it produces numerous (bad) patches, as can be seen from the
number of generated proposals.

However, the repairs’ output is not useless despite the overfitting: the
suggested patches clearly show the shortcomings of the test suite. The pro-
posed overfit patches help developers with fault localization and improving
the test suite. In particular, as properties and unit tests are not exclusive,
developers can consider a test-and-repair-driven approach, where they ad-
just the test suite and program iteratively assisted by the repair tool. We
consider this approach especially attractive for class-room settings, where
the programs are of lower complexity and allow for fast feedback. While
we don’t expect PROPR to be effective enough to solve the tasks for the stu-
dents, it clearly shows where the problems in the tests or code are. Exploring
class-room usage is an interesting direction for future work.
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Drastically Increased Search-Space Due to the novel approach to find-
ing repair candidates, the search space drastically increased as compared to
using existing expressions or statements only. This can be seen with the ab-
sence of random-search findings. Other studies showed at least some results
with random search, sometimes reporting random search as most successful
[53]. As we find (many) patches with exhaustive search, the problems are
generally solvable with small changes. This implies that the only reason for
random search to yield no results is the increased search space.

This finding motivates further investigating the genetic search and its op-
timization for more complex problems that do not achieve timely results with
exhaustive search. We consider it worthwhile to revisit existing datasets, that
were not solvable due to the redundancy assumption in most repair tools, us-
ing a typed hole approach.

Transference to Java As Java is the most prominent language for APR at
the moment, it begs the question of which results can be transferred from
Haskell into more mainstream approaches.

Properties are supported by JUnit-Plugins® and can easily be added to any
common test suite and build-tool. Hence, the positive effects of properties as
presented in Section 3.5 only require Java programs with sufficient proper-
ties. However, the current Java-ecosystems are not utilizing properties; even
less sophisticated JUnit-Features, such as parametrized tests, are not widely
adopted. This is in stark contrast to functional programming communities,
where tools like QuickCheck are widely used.

The hole-fitting repair approach cannot be easily reproduced for Java.
The JavaC, unlike GHC, is not intended to be used as a library. Nevertheless,
Java is strictly typed and the basic hole-fitting-approach can be integrated
using meta-programming libraries like Spoon [47]. Many challenges remain
widely unsolvable: as Java’s methods are not pure functions, they cannot be
just transplanted. Side effects can wreak havoc and just on a technical level
polymorphism, that is often only resolvable dynamically, bares huge follow-
up-challenges.

But not all is lost for the JVM: repair approaches that focus on the byte-
code [13, 17], can more easily adapt hole-fitting. In particular, one could
imagine a tool that produces holes for bytecode and introduces the hole-fits
utilizing more strict JVM Compilers such as Closure or Scala. We consider
this extension a hard but valuable track for further research.

3https ://9ithub.com/pholser/junit-quickcheck
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3.7. Threats to Validity

Future Work The primary research challenge we see is to combine ex-
isting approaches with the newly introduced PropR hole-fitting. A hybrid
approach that could produce high churn with techniques from Astor [13] or
ARJA [70] in combination with the fine-grained changes produced by PropR
could solve a broader range of issues. Specific to Haskell is the need to intro-
duce left-hand side definitions, i.e. new pattern matches or functions. These
could be provided by generative neural networks [2, 8] and either be used as
mutations or as an initial population of chromosomes. Representing multiple
types of changes is only a matter of representation within the chromosome
— the remaining search, fitness and fault localization can be kept as is.

For fault localization, we currently use all the expressions involved in the
counter-examples. However, it should be possible to use the coverage infor-
mation and the passing and failing tests for spectrum-based fault localization
to narrow the fault-involved expressions further to suspicious expressions,
rather than all the expressions involved in the failing test.

In terms of further evaluation, the next steps are user surveys and exper-
iments on real world applications such as Pandoc* or Alex®. In particular,
we envision a bot similar to Sorald [15] that provides patch-suggestions on
failing pull-requests. We would like to ask maintainers and the public com-
munity to give feedback on the quality of repairs, and whether the suggested
patches, despite may not being added to the code, contributed to fault local-
ization or improvements of the test suite.

3.7 Threats to Validity

Internal Threats We addressed the randomness in our experiments by
running 5 runs with different seeds according to the suggestions of Arcuri
and Fraser [5].

The tool used in our experiment could contain bugs. We publish it on
acceptance under a FOSS-license to gain further insights and suggestions
from the community.

The experiment and dataset may contain mistakes, which we address by
providing a reproduction package and open source the experiment and data.
The package also contains notes on the data-preparation for the experiment.

External Threats The dataset is based on student data, which could be
considered artificial. We would like to stress that student data has been suc-
cessfully used in literature for program repair [12, 14, 31, 33].

4https://pandoc.org/
5https://www.haskell.org/alex/
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A real-world study on program such as Pandoc [11] is part of future work.
Pandoc, a popular Haskell document-converter, is in fact rich in properties
that test e.g., for symmetry and reflectivity over different conversions.

3.8 Conclusion

The goal of this paper is to introduce a new automatic program repair ap-
proach based on types and compiler suggestions, in addition to utilizing
properties for repair fitness and fault localization. To that end, we imple-
mented PropR, a Haskell tool that utilizes GHC for patch-generation and
can evaluate properties as well as unit tests. We provided a dataset with 30
programs and their unit tests and properties. On this dataset we performed
an empirical study to compare the repair rates for different test suites and
search-algorithms, and manually inspect the generated patches.

Our analysis of 230 patches show that we reach an effective repair rate of
10%-13% (comparable to other state-of-the-art tools) but have a reduced rate
of overfitting (from 85% to 63% when applying properties). The novel ap-
proach for patch generation produces a greatly increased search space and
promising patches on manual inspection. What we observed was that prop-
erties did not increase the number of programs for which patches were found,
but when it finds solutions they were less overfit and found faster. Overfitting
that was based on unit tests persisted into the combined test suite. Similarly,
we have observed that properties can produce cases of overfitting too.

Our results attest to the stronger utilization of language-features for patch
generation to overcome the redundancy assumption, i.e., only reusing exist-
ing code. Using the compiler’s information on types and scopes, the created
patches are semantically correct and come in a much greater variety, which
was reported as a missing feature for many APR tools. Our manual analysis
motivates to use the generated patches (if not directly applicable) as guidance
for fault localization or to improve the test suite.

3.9 Online Resources

ProrR is available on GitHub under MIT-licence at https://github.com/
Tritlo/PropR. The reproduction package which includes the data, evalua-
tion and a binary of PropR is available on Zenodo https://doi.org/10.
5281/zenodo.5389051
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bstract. Types indexed with extra type-level information are
A a powerful tool for statically enforcing domain-specific security
properties. In many cases, this extra information is runtime-irrelevant,
and so it can be completely erased at compile-time without degrading
the performance of the compiled code. In practice, however, the added
bureaucracy often disrupts the development process, as programmers
must completely adhere to new complex constraints in order to even
compile their code.
In this work we present WRIT, a plugin for the GHC Haskell com-
piler that relaxes the type checking process in the presence of runtime-
irrelevant constraints. In particular, WRIT can automatically coerce be-
tween runtime equivalent types, allowing users to run programs even in
the presence of some classes of type errors. This allows us to gradually
secure our code while still being able to compile at each step, separating
security concerns from functional correctness.
Moreover, we present a novel way to specify which types should be con-
sidered equivalent for the purpose of allowing the program to run, how
ambiguity at the type level should be resolved and which constraints
can be safely ignored and turned into warnings.






4.1 Programming with Type Constraints

Enforcing domain-specific properties is a complicated task that developers
are forced to carefully address when designing complex systems. In the
functional programming realm, strongly-typed languages like Haskell are
an advantage since one can use the type system to enforce domain-specific con-
straints! However, this technique is not without flaws. To illustrate some of
the issues with this technique, suppose we are writing a library for information-
flow control over labeled pure values — loosely inspired by the MAC library
by Russo [18]. For simplicity, we assume that the only labels are L for public
and H for secret data. Then, we can use phantom types [3, 8] to label arbitrary
data with security labels:

data Label =L | H

newtype Labeled (1 :: Label) a = Labeled a

As an example, the value Labeled 42 :: Labeled L Int represents
a public integer, whereas Labeled "1234" :: Labeled H String repre-
sents a secret string. It is important to note that in Haskell, newtypes are
representationally equal to the type they wrap, meaning that the runtime
representation of Labeled 42 is the same as the one for 42. Later, labeled
values can be combined according to different security policies using type
constraints [6, 7], as an example, we can enforce that no information flows
from H to L by defining the empty type class:

class ((1 :: Label) <= (1' :: Label))

and defining instances of (<=) only for the flows we allow:
instance (L <= L)

instance (L <= H)

instance (H <= H)

Since there is no instance for the forbidden flow H <= L, any code that trig-
gers the constraint H <= L during compilation will produce a type error.
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Note that the class (<=) has no methods, so it is represented by a computationally-
irrelevant empty dictionary at runtime.

We can now use (<=) to implement combinators over labeled values that
ensure that secrets do not leak into public data, e.g. the familiar zip combi-
nator can be given the type:

zip :: (x <= z, y <= z) => Labeled x [a]
-> Labeled y [b]
-> Labeled z [(a, b)]

where (x <= z, y <= z) ensures that the label z of the output is greater
or equal to both its inputs. Then, the definition:

bad :: Labeled L [(Usr, Pwd)]
bad = zip (Labeled [11111, 222222] :: Labeled L [Usr])
(Labeled ["hun", "ter2"] :: Labeled H [Pwd])

will be rejected by GHC with a generic error indicating that we are missing
a type class instance for the forbidden flow:

error: No instance for H <=L (...)

and indeed, we can see that there is a leak from the secret passwords in the list
["hun","ter2"] to the public list [ (11111, "hun"), (222222,"ter2")].
Ouch!

As shown so far, we can use Haskell’s type system to accommodate domain-
specific constraints about security labels using phantom types and type classes.
Although this is a powerful strategy when it comes to writing domain-specific
libraries [1, 9, 12, 16], it can be hard to use in practice:

e The code cannot be run unless it is provably secure, preventing users from
testing the functional correctness of the program separately from its secu-
rity properties.

e Users must tag all their data with an explicit Label, and cannot use features
such as pattern matching without explicitly unwrapping and rewrapping
the labels.

e Moreover, they need to tag both the secret and the public data, even though
there might exist a sane default tag.

e The type errors are too general and hard to understand for users unfamiliar
with Haskell’s type system, and,;

e Synthesizing type based suggestions [5] becomes harder, due to domain-
specific constraints and ambiguous types.
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4.2 Weakening Runtime-Irrelevant Typing

In GHC, type checking is based on constraint-based type inference. Albeit
intricate in practice, the algorithm works by traversing the code to accumu-
late a set of type constraints (defined as part of the type system specification)
and then invokes the constraint solver to solve those constraints [19]. In the
latest GHC, constraints come in three main flavours [17]:

e Givens from type signatures, for which we have evidence,
e Wanteds from expressions, for which we want evidence,

e Deriveds, which are constraints that any solution must satisfy but we do not
require evidence of (e.g. equalities arising from functional dependencies
and superclasses).

The constraint solver solves the wanteds with respect to the givens and the
typing rules of GHC (which include creating and unifying type variables),
making sure that the solution satisfies the deriveds [17, 19]. This process is
capable of type checking complex programs, but isn’t perfect when it comes
to domain-specific constraints like (<=).

Luckily, the type checker can be extended with plugins to handle addi-
tional type checking rules, for example to simplify naturals or invoking an
SMT solver [4, 10]. Type checker plugins are invoked by the compiler in
order to a) simplify givens, where a plugin might find a contradiction, and,
b) whenever there are unsolved constraints that the type checker could not
solve.

For the purpose of weakening the type checking of runtime-irrelevant
types, we developed WRIT,'a plugin that extends GHC’s type system by
adding the rules seen in Figure 4.1 for when type checking would not be
able to proceed otherwise. Users of the plugin can selectively apply these
rules to runtime-irrelevant constraints and equalities by writing instances
of the Ignore, Discharge, Promote, and Default type families [14, 20] as
described in the rest of this section.

4.2.1 Ignoring Runtime-Irrelevant Constraints

In Haskell, users can define empty typeclasses that have no methods (like
(<=)), which represent runtime-irrelevant constraints. However, we would
like to be able to turn these constraints into compile time warnings, so that
functional correctness of the program can be verified separately from its se-

1The WRIT plugin is available at https://github.com/tritlo/writ-plugin.
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curity. The IcNORE rule applies whenever there is an unsolved empty type-
class constraint with an instance of the Ignore family:

type family Ignore (c :: Constraint) :: Message
By defining an instance of the Ignore family for (<=):

type instance Ignore (H <= L) =
Msg (Text "Found forbidden flow from H to L!")

Users can specify that the constraintH <= L can be ignored with the message
shown above. With this instance in scope and WRIT enabled, the error for
the bad function defined earlier will be turned into the following warning:

warning: Found forbidden flow from H to L!

4.2.2 Discharging Runtime-Irrelevant Equalities

With runtime-irrelevant types, we often want to ignore nominal equalties of
the form a ~ b, which are specially handled GHC primitives. As an example,
we might want to turn L ~ H into a warning when compiling insecure pro-
grams. The D1sCHARGE rule applies to unsolved equalities of the form a ~ b,
for which there is an instance of the Discharge family for a and b:

type family Discharge (a :: k) (b :: k) :: Message
By defining an instance of Discharge for L and H:

type instance Discharge L H =
Msg (Text "Using a public L as a secret H!")

Users can allow L ~ H with the message shown above. This in conjunction
withignoringH <= L effectively negates any guarantees that our library pro-
vides.

4.2.3 Promoting Representationally-Equivalent Types

A special case of discharging is when a and b have the kind (*), the kind of
base types in Haskell. Discharging the equality a ~ b effectively promotes a to
b, meaning that a is treated as a b. This is only runtime-irrelevant when a and
b have the same runtime representation, making a ~ b runtime-irrelevant.
This coincides with the Coercible constraint in GHC [2], so to handle this
common case we define Promote:

type family Promote (a :: %) (b :: %) :: Message
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And define an instance of Discharge for types of kind (*):

type instance Discharge (a :: *) (b :: %) =
OnlyIf (Coercible a b) (Promote a b)

Then, by defining an instance of Promote for labeled values:

type instance Promote a (Labeled 1 a) =
Msg (Text "Promoting unlabeled " :<>: ShowType a
i<>: Text " to " :<>: ShowType (Labeled 1 a))

Users can use any base type a (like Int) as a Labeled 1 a, where 1 is ei-
ther L or H, e.g., it becomes possible to write: [1,2] :: Labeled L [Int],
where [1,2] is promoted and treated as a public [Int].

4.2.4 Defaulting Runtime-Irrelevant Type Variables

When programming using runtime-irrelevant types, it frequently occurs that
the type of a phantom type variable cannot be inferred. However, it is often
the case that there is a “sane” value to choose when there are no restrictions,
such as the label L for labeled data. The DEFAULT rule applies whenever there
is an unsolved constraint with a free type variable of kind k for which there
is an instance of the Default family:

type family Default k :: k

By defining an instance of the Default family for Label:

type instance Default Label = L

Users can specify that any free type variables of kind Label in an unsolved
constraint should be set to L.

Now With Less Cruft! After defining the instances as shown above, WRIT
can use them to weaken our library’s domain-specific constraints. Users can
then easily express and run (possibly insecure) programs operating on la-
beled values as if they had the underlying type without overhead:

labeledOr :: Labeled L [Bool] -> Labeled L Bool
labeledOr (x:xs) = if x then True else labeledOr xs
labeledOr _ = True
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I, Defaultk,a ~ Defaultk r c: Constraint, M
[,a:k € FV(c),Defaultk + c: Constraint, M U {m 4.}

DEFAULT

I',Ignorec + Ignorec ~ Msgm, M

- IGNORE
I',Ignorec + c: Constraint, M U {m}

I',Dischargeab r Dischargeab ~ Msgm, M
I',Dischargeabt+a~ b, M U {m}

DISCHARGE

I' + c: Constraint, M, Femy~my, M
I'+ Onlylfcm, ~my,, M_UM

ONLYIF

Figure 4.1: The typing rules that WRIT extends GHC’s type system with.
The judgement I', Fay...a,, + ¢, M here judges that with an
instance Faj...a, in the context the constraint (or equality)
¢ holds with the set of output messages M. Here, we write
¢ : Constraint to denote a well formed constraint ¢, and m4.¢ is
a compiler generated message based on the source expression.

4.2.5 Ensuring Runtime-Irrelevance

Since it is not always safe to ignore or discharge, we allow users to recover
some safety by using the OnlyIf constructor, asused above in the Discharge
instance for (*) to assert Coercible. The ONLYIF rule is used to unravel
Fay...a, ~Msgm;,’ whenFa,...a, reduces to an OnlyIf c m,, and adds the
additional constraints ¢ and m, ~ m;, as obligations. This eventually results
in an equality of the form Msgm, ~ Msg m;, causing GHC to unify m; with
m,, inferring the message to be emitted. Note that Onlylfab only holds if
both a and b hold, and b is only emitted if a holds.

4.2.6 Turning Type-Errors into Warnings

To model the fact that we often want to turn type-errors into warnings, all
our rules produce a set of messages, M, which is a union of the messages
produced by any obligations. The DiscHARGE and IGNORE rule add a user
defined message to the set, whereas the DErauLT rule adds a standardized
message. The user defined messages are built using GHC’s user type-error
combinators, which allows them to use type families to compute the mes-
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sage [15]. The resulting set of messages is reported as warnings at the end
of type checking, or alternatively as type-errors, if the user passes the plugin
the keep-errors flag.

4.3 Implementation

WRIT operates by examining the wanted and derived constraints passed to
the plugin by GHC. Messages are handled as a set of logs with type vari-
ables for the messages and their origin. The logs are finalized before they are
output, with the type variables representing messages are replaced with the
messages themselves.

The plugin applies the DEFAULT rule by generating constraints of the
form a ~ Default k for any free type variable a of kind k in unsolved con-
straints, Then, e.g. Default Label will reduce to L, and the variable a is set
to L in the context. In Haskell there are two types of type variables, rigid
and flexible. Rigid type variables are variables mentioned in the givens, i.e.
the constraints. Flexible type variables are type variables instantiated from
a forall. For example, in return :: Monad m => a -> m a, mis a rigid
type variable, while a is flexible type variable. When we default a type vari-
able, we must distinguish between rigid and flexible type variables: for rigid
type variables, the generated constraints take the form of a given, with as-
sertion from WRIT that a is equivalent to Default Label as the evidence.
For flexible type variables, we do not require evidence, so it suffices to emit
a derived to unify a with Default Label.

For the IGNORE rule, the plugin asserts that the constraint holds, which
corresponds to the empty typeclass having an instance. It also emits a con-
straint that applying the Ignore family to the constraint results in a message
wrapped in the Msg constructor, and adds it to the set of messages as a new
type variable that will unify with the message itself.

Similarly for the DiscHARGE rule, WRIT generates a proof by assertion
that a ~ b holds (e.g. L ~ H), and adds the obligation that Dischargeab re-
duces to a Msgm, with the fresh flexible type variable m added to the set
of messages M. The evidence is an assertion in the form of a zero-cost co-
ercion [2], which is safe for runtime-irrelevant types which have the same
runtime representation.

WRIT applies the ONLYIF rule by generating an assertion that Onlylf cm,
my, and checking that both c and m, ~ m;, hold. As an optimization, we solve
equalities of the form:

OnlyIf ¢ (OnlyIfc, (... (Onlylfc, Msgm,))) ~ Msgmy,
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by checking all the constraints cy,...,c, and Msgm, ~ Msgm,, causing
GHC to unify m, with m,.

4.4 Conclusions and Future Work

We presented WRIT, a type checker plugin for GHC to weaken the type
checking process for runtime-irrelevant constraints and representationally-
equivalent types. We believe our work will facilitate developers to adopt
more secure programming practices in Haskell with less overhead, since it is
now possible to start doing so in a more gradual manner. As this is a work
in progress, there are a few avenues for future work:

Safety

The WRIT plugin gives users a lot of freedom and allows them to override
the typing rules used in Haskell. We have yet to investigate which rules can
be safely defined by the user, what can go wrong if they define an invalid
rule, and whether we can prevent users from defining such rules.

Overlaps

Neither the compiler plugin nor the formalization deal with what happens
when the user defined instances overlap, which can cause the typing rules
of WRIT to overlap and it is unclear which one to choose. In the plugin
itself, this is handled by preferring DisSCHARGE to IGNORE and IGNORE to DE-
FAULT. It is clear however that the choice should not affect the semantics of
the compiled program (something yet to be proven), but which typing rule
is preferred can affect the errors or warnings emitted in the process. One
possibility is to design a heuristic that selects the most specific typing rule
applicable, to emit more concrete (and useful) messages, as opposed to more
generic ones.

Dynamic and Gradual Typing

We want to investigate how relaxing the type checking process could interact
with Haskell’s dynamic typing capabilities [11]. Whenever the type checker
finds two expression producing a type mismatch error, it might be possi-
ble to promote them both to Haskell’s dynamic representation, Dynamic.
In this light, the invalid list expression [42, "hello"] could be promoted
to a list of dynamic values by promoting both 42 and "hello" to a uni-
fied dynamic representation, i.e. [42, "hello"] :: [Dynamic]. Then,
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dynamically typed values could be demoted to concrete types via runtime
checks inserted automatically. This mechanism could shorten the gap be-
tween Haskell, a strongly typed language, and dynamically typed languages
like Python or Erlang by simply toggling a compiler plugin, enabling us to
do module-based gradual typing [18].

31






Bibliography

[1] J. Bracker and A. Gill. Sunroof: A monadic dsl for generating javascript.

In Proceedings of the 16th International Symposium on Practical Aspects
of Declarative Languages - Volume 8324, PADL 2014, page 65-80, Berlin,
Heidelberg, 2014. Springer-Verlag.

[2] J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe

zero-cost coercions for haskell. In Proceedings of the 19th ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’14,
page 189-202, New York, NY, USA, 2014. Association for Computing
Machinery.

[3] J. Cheney and R. Hinze. Phantom types. Technical report, Cornell Uni-

(4]

(5]

versity, 2003.

L S. Diatchki. Improving haskell types with smt. In Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell, Haskell ’15, page 1-10, New
York, NY, USA, 2015. Association for Computing Machinery.

M. P. Gissurarson. Suggesting valid hole fits for typed-holes (experience
report). In Proceedings of the 11th ACM SIGPLAN International Sympo-
sium on Haskell, Haskell 2018, page 179-185, New York, NY, USA, 2018.
Association for Computing Machinery.

C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type
classes in haskell. ACM Trans. Program. Lang. Syst., 18(2):109-138, Mar.
1996.

S. P. Jones, M. Jones, and E. Meijer. Type classes: an exploration of the
design space. In Haskell workshop, pages 1-16, 1997.

D. Leijen and E. Meijer. Domain specific embedded compilers. In Pro-
ceedings of the 2nd Conference on Domain-Specific Languages, DSL *99,
page 109-122, New York, NY, USA, 2000. Association for Computing
Machinery.

83



Bibliography

(9]

G. Mainland and G. Morrisett. Nikola: Embedding compiled gpu func-
tions in haskell. In Proceedings of the Third ACM Haskell Symposium on
Haskell, Haskell ’10, page 67-78, New York, NY, USA, 2010. Association
for Computing Machinery.

D. Otwani and R. A. Eisenberg. The thoralf plugin: For your fancy type
needs. In Proceedings of the 11th ACM SIGPLAN International Sympo-
sium on Haskell, Haskell 2018, page 106-118, New York, NY, USA, 2018.
Association for Computing Machinery.

[11] J. Peterson. Dynamic typing in haskell. Technical report, Technical

[12]

[13]

(17]

(18]

Report YALEU/DCS/RR-1022, Yale University, Department of Computer
Science, 1993.

R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In
Proceedings of the First ACM SIGPLAN Symposium on Haskell, Haskell
’08, page 25-36, New York, NY, USA, 2008. Association for Computing
Machinery.

A. Russo. Functional pearl: Two can keep a secret, if one of them uses
haskell. In Proceedings of the 20th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’15, page 280-288, New York, NY,
USA, 2015. Association for Computing Machinery.

T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann. Type
checking with open type functions. In Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming, ICFP *08,
page 51-62, New York, NY, USA, 2008. Association for Computing Ma-
chinery.

A. Serrano and ]J. Hage. Type error customization in ghc: Controlling
expression-level type errors by type-level programming. In Proceedings
of the 29th Symposium on the Implementation and Application of Func-
tional Programming Languages, IFL 2017, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

D. Stefan, D. Maziéres, J. C. Mitchell, and A. Russo. Flexible dynamic
information flow control in the presence of exceptions. Journal of Func-
tional Programming, 27:e5, 2016.

G. Team. The ghc-8.10.1 library Constraint module, aug 2020.

M. Toro, R. Garcia, and E. Tanter. Type-driven gradual security with
references. ACM Trans. Program. Lang. Syst., 40(4), Dec. 2018.

84



Bibliography

[19] D. Vytiniotis, S. Peyton jones, T. Schrijvers, and M. Sulzmann. Out-
sidein(x) modular type inference with local assumptions. }. Funct. Pro-
gram., 21(4-5):333-412, Sept. 2011.

[20] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhées. Giving haskell a promotion. In Proceedings of the 8th
ACM SIGPLAN Workshop on Types in Language Design and Implemen-
tation, TLDI 12, page 53-66, New York, NY, USA, 2012. Association for
Computing Machinery.

85



	Introduction
	Motivation and Overview
	Background and Related Work
	Haskell
	Glasgow Haskell Compiler (GHC)
	Typed-Holes
	Program Synthesis
	Automatic Program Repair
	Property-Based Testing
	Weak Runtime-Irrelevant Typing

	Thesis structure
	Bibliography

	Suggesting Valid Hole Fits for Typed-Holes
	Introduction
	Contributions
	Background

	Case Studies
	Exercise from Programming in Haskell
	The Lens Library

	Implementation
	Inputs & Outputs
	Relevant Constraints
	Candidates
	Checking for Fit
	Refinement hole fits
	Sorting the Output
	Dealing with Side-effects

	An Additional Application
	Related Work & Ideas
	Conclusion
	Future Work
	Current Status

	Bibliography

	PropR: Property-Based Automatic Program Repair
	Introduction
	Background and Related Work
	Property-Based Testing
	Haskell, GHC & Typed Holes
	GenProg, Patch Representation, & Genetic Program Repair
	Repair in Formal Verified Programs & Program Synthesis

	Technical Details — PropR
	Compiler-Driven Mutation
	Fixes
	Checking Fixes
	Search
	Looping and Finalizing Results

	Empirical Study
	Research Questions
	Dataset
	Methodology / Experiment Design

	Results
	Discussion
	Threats to Validity
	Conclusion
	Online Resources
	Bibliography

	Weak Runtime-Irrelevant Typing for Security
	Programming with Type Constraints
	Weakening Runtime-Irrelevant Typing
	Ignoring Runtime-Irrelevant Constraints
	Discharging Runtime-Irrelevant Equalities
	Promoting Representationally-Equivalent Types
	Defaulting Runtime-Irrelevant Type Variables
	Ensuring Runtime-Irrelevance
	Turning Type-Errors into Warnings

	Implementation
	Conclusions and Future Work
	Bibliography


